5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 7
Jul.  2017
Turn off MathJax
Article Contents

Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation

doi: 10.1016/j.jgg.2017.03.003
More Information
  • Corresponding author: E-mail address: mxl7125@126.com (Xiaoli Ma)
  • Received Date: 2016-11-15
  • Accepted Date: 2017-03-17
  • Rev Recd Date: 2017-03-02
  • Available Online: 2017-03-21
  • Publish Date: 2017-07-20
  • Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show thatCHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis.
  • loading
  • [1]
    Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B. et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann. N. Y. Acad. Sci., 1171 (2009),pp. 59-76
    [2]
    Amos, C.I., Wu, X., Broderick, P. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 Nat. Genet., 40 (2008),pp. 616-622
    [3]
    Arredondo, J., Chernyavsky, A.I., Jolkovsky, D.L. et al. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes FASEB J., 20 (2006),pp. 2093-2101
    [4]
    Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G. et al. Cell, 98 (1999),pp. 295-303
    [5]
    Brown, K.C., Perry, H.E., Lau, J.K. et al. Nicotine induces the up-regulation of the alpha7-nicotinic receptor (alpha7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA protein pathway J. Biol. Chem., 288 (2013),pp. 33049-33059
    [6]
    Carlisle, D.L., Liu, X., Hopkins, T.M. et al. Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells Pulm. Pharmacol. Ther., 20 (2007),pp. 629-641
    [7]
    Chen, J., Lan, T., Zhang, W. et al. Feed-forward reciprocal activation of PAFR and STAT3 regulates epithelial-mesenchymal transition in non-small cell lung cancer Cancer Res., 75 (2015),pp. 4198-4210
    [8]
    Chen, R.J., Ho, Y.S., Guo, H.R. et al. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells Toxicol. Sci., 104 (2008),pp. 283-293
    [9]
    Chen, R.J., Ho, Y.S., Guo, H.R. et al. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells Toxicol. Sci., 115 (2010),pp. 118-130
    [10]
    Dasgupta, P., Rizwani, W., Pillai, S. et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines Int. J. Cancer, 124 (2009),pp. 36-45
    [11]
    Fan, J., Wang, X.J., Jiang, G.N. et al. Survival and outcomes of surgical treatment of the elderly NSCLC in China: a retrospective matched cohort study Eur. J. Surg. Oncol., 33 (2007),pp. 639-643
    [12]
    Gabrielsen, M.E., Romundstad, P., Langhammer, A. et al. Association between a 15q25 gene variant, nicotine-related habits, lung cancer and COPD among 56,307 individuals from the HUNT study in Norway Eur. J. Hum. Genet., 21 (2013),pp. 1293-1299
    [13]
    Garcia, R., Bowman, T.L., Niu, G. et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells Oncogene, 20 (2001),pp. 2499-2513
    [14]
    Grando, S.A. Connections of nicotine to cancer Nat. Rev. Cancer, 14 (2014),pp. 419-429
    [15]
    Grozio, A., Paleari, L., Catassi, A. et al. Natural agents targeting the alpha7-nicotinic-receptor in NSCLC: a promising prospective in anti-cancer drug development Int. J. Cancer, 122 (2008),pp. 1911-1915
    [16]
    Guo, J., Kim, D., Gao, J. et al. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer Oncogene, 32 (2013),pp. 151-159
    [17]
    Gyorffy, B., Lanczky, A., Szallasi, Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients Endocr. Relat. Cancer, 19 (2012),pp. 197-208
    [18]
    Gyorffy, B., Surowiak, P., Budczies, J. et al. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer PLoS One, 8 (2013),p. e82241
    [19]
    Gyorffy, B., Lanczky, A., Eklund, A.C. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients Breast Cancer Res. Treat., 123 (2010),pp. 725-731
    [20]
    Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer Nat. Rev. Cancer, 3 (2003),pp. 733-744
    [21]
    Herbst, R.S., Heymach, J.V., Lippman, S.M. Lung cancer N. Engl. J. Med., 359 (2008),pp. 1367-1380
    [22]
    Hung, R.J., McKay, J.D., Gaborieau, V. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 Nature, 452 (2008),pp. 633-637
    [23]
    Improgo, M.R., Tapper, A.R., Gardner, P.D. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer Biochem. Pharmacol., 82 (2011),pp. 1015-1021
    [24]
    Itier, V., Bertrand, D. Neuronal nicotinic receptors: from protein structure to function FEBS Lett., 504 (2001),pp. 118-125
    [25]
    Jia, Y., Sun, H., Wu, H. et al. Nicotine inhibits cisplatin-induced apoptosis via regulating alpha5-nAChR/AKT signaling in human gastric cancer cells PLoS One, 11 (2016),p. e0149120
    [26]
    Li, H., Wang, S., Takayama, K. et al. Nicotine induces resistance to erlotinib via cross-talk between alpha 1 nAChR and EGFR in the non-small cell lung cancer xenograft model Lung Cancer, 88 (2015),pp. 1-8
    [27]
    Ma, X., Jia, Y., Zu, S. et al. alpha5 Nicotinic acetylcholine receptor mediates nicotine-induced HIF-1alpha and VEGF expression in non-small cell lung cancer Toxicol. Appl. Pharmacol., 278 (2014),pp. 172-179
    [28]
    Momi, N., Ponnusamy, M.P., Kaur, S. et al. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through alpha7nAChR-mediated MUC4 upregulation Oncogene, 32 (2013),pp. 1384-1395
    [29]
    Morgan, M.B., Parker, C.C., Robinson, J.W. et al. Aquat. Toxicol., 110–111 (2012),pp. 66-73
    [30]
    Niu, X.M., Lu, S. Acetylcholine receptor pathway in lung cancer: new twists to an old story World J. Clin. Oncol., 5 (2014),pp. 667-676
    [31]
    Paleari, L., Sessa, F., Catassi, A. et al. Inhibition of non-neuronal alpha7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts Int. J. Cancer, 125 (2009),pp. 199-211
    [32]
    Pillai, S., Dasgupta, P., Chellappan, S.P. Methods Mol. Biol., 1288 (2015),pp. 429-446
    [33]
    Raimondi, S., Maisonneuve, P., Lohr, J.M. et al. Early onset pancreatic cancer: evidence of a major role for smoking and genetic factors Cancer Epidemiol. Biomarkers Prev., 16 (2007),pp. 1894-1897
    [34]
    Reck, M., Heigener, D.F., Mok, T. et al. Management of non-small-cell lung cancer: recent developments Lancet, 382 (2013),pp. 709-719
    [35]
    Schaal, C., Chellappan, S.P. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers Mol. Cancer Res., 12 (2014),pp. 14-23
    [36]
    Schaal, C., Chellappan, S.P. Nicotine-mediated regulation of nicotinic acetylcholine receptors in non-small cell lung adenocarcinoma by E2F1 and STAT1 transcription factors PLoS One, 11 (2016),p. e0156451
    [37]
    Schuller, H.M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat. Rev. Cancer, 9 (2009),pp. 195-205
    [38]
    Schuller, H.M. Regulatory role of the alpha7nAChR in cancer Curr. Drug Targets, 13 (2012),pp. 680-687
    [39]
    Singh, S., Pillai, S., Chellappan, S. Nicotinic acetylcholine receptor signaling in tumor growth and metastasis J. Oncol. (2011),p. 456743
    [40]
    Sun, H., Ma, X. alpha5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells Exp. Toxicol. Pathol., 67 (2015),pp. 477-482
    [41]
    Talhout, R., Schulz, T., Florek, E. et al. Hazardous compounds in tobacco smoke Int. J. Environ. Res. Public Health, 8 (2011),pp. 613-628
    [42]
    Tu, S.H., Ku, C.Y., Ho, C.T. et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits nicotine- and estrogen-induced alpha9-nicotinic acetylcholine receptor upregulation in human breast cancer cells Mol. Nutr. Food Res., 55 (2011),pp. 455-466
    [43]
    Xu, T.Y., Guo, L.L., Wang, P. et al. Chronic exposure to nicotine enhances insulin sensitivity through alpha7 nicotinic acetylcholine receptor-STAT3 pathway PLoS One, 7 (2012),p. e51217
    [44]
    Yu, H., Pardoll, D., Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3 Nat. Rev. Cancer, 9 (2009),pp. 798-809
    [45]
    Zhang, Y., Zhao, J., Qiu, L. et al. Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling Tumor Biol., 37 (2016),pp. 11187-11198
    [46]
    Zhou, C., Tong, Y., Wawrowsky, K. et al. PTTG acts as a STAT3 target gene for colorectal cancer cell growth and motility Oncogene, 33 (2014),pp. 851-861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return