[1] |
Barnard, E.A. Biological function of pancreatic ribonuclease Nature, 221 (1969),pp. 340-344
|
[2] |
Breukelman, H.J., Jekel, P.A., Dubois, J.Y. et al. Eur. J. Biochem., 268 (2001),pp. 3890-3897
|
[3] |
Breukelman, H.J., Munnik van der, N., Kleineidam, R.G. et al. Secretory ribonuclease genes and pseudogenes in true ruminants Gene, 212 (1998),pp. 259-268
|
[4] |
Churakov, G., Sadasivuni, M.K., Rosenbloom, K.R. et al. Rodent evolution: back to the root Mol. Biol. Evol., 27 (2010),pp. 1315-1326
|
[5] |
Confalone, E., Beintema, J.J., Sasso, M.P. et al. Molecular evolution of genes encoding ribonucleases in ruminant species J. Mol. Evol., 41 (1995),pp. 850-858
|
[6] |
Dubois, J.-Y.F., Ursing, B.M., Kolkman, J.A. et al. Molecular evolution of mammalian ribonucleases 1 Mol. Phylogenet. Evol., 27 (2003),pp. 453-463
|
[7] |
Dubois, J.Y., Jekel, P.A., Mulder, P.P. et al. Pancreatic-type ribonuclease 1 gene duplications in rat species J. Mol. Evol., 55 (2002),pp. 522-533
|
[8] |
Fang, X., Nevo, E., Han, L. et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat. Commun., 5 (2014),p. 3966
|
[9] |
Gnerre, S., Maccallum, I., Przybylski, D. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 1513-1518
|
[10] |
Goo, S.M., Cho, S. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty Genome. Biol. Evol., 5 (2013),pp. 2124-2140
|
[11] |
Liu, J., Wang, X.P., Cho, S. et al. Evolutionary and functional novelty of pancreatic ribonuclease: a study of Musteloidea (order Carnivora) Sci. Rep., 4 (2014),p. 5070
|
[12] |
Romanenko, S.A., Perelman, P.L., Trifonov, V.A. et al. Chromosomal evolution in Rodentia Heredity, 108 (2012),pp. 4-16
|
[13] |
Siegel, S.J., Percopo, C.M., Dyer, K.D. et al. Mamm. Genome, 20 (2009),pp. 749-757
|
[14] |
Voloch, C.M., Vilela, J.F., Loss-Oliveira, L. et al. Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America BMC. Res. Notes, 6 (2013),p. 160
|
[15] |
Xu, H., Liu, Y., Meng, F. et al. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats Gene, 526 (2013),pp. 112-117
|
[16] |
Xu, L., Su, Z., Gu, Z. et al. Evolution of RNases in leaf monkeys: being parallel gene duplications or parallel gene conversions is a problem of molecular phylogeny Mol. Phylogenet. Evol., 50 (2009),pp. 397-400
|
[17] |
Yu, L., Wang, X.Y., Jin, W. et al. Mol. Biol. Evol., 27 (2010),pp. 121-131
|
[18] |
Yu, L., Zhang, Y.P. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora Mol. Biol. Evol., 23 (2006),pp. 2326-2335
|
[19] |
Zhang, J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys Nat. Genet., 38 (2006),pp. 819-823
|
[20] |
Zhang, J., Dyer, K.D., Rosenberg, H.F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection Proc. Natl. Acad. Sci. U. S. A., 97 (2000),pp. 4701-4706
|
[21] |
Zhang, J., Zhang, Y.P., Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey Nat. Genet., 30 (2002),pp. 411-415
|
[22] |
Zhou, X., Wang, B., Pan, Q. et al. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history Nat. Genet., 46 (2014),pp. 1303-1310
|