[1] |
Ambros, V. MicroRNAs and developmental timing Curr. Opin. Genet. Dev., 21 (2011),pp. 511-517
|
[2] |
Babiarz, J.E., Ruby, J.G., Wang, Y. et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs Genes Dev., 22 (2008),pp. 2773-2785
|
[3] |
Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
|
[4] |
Baskerville, S., Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes RNA, 11 (2005),pp. 241-247
|
[5] |
Benetti, R., Gonzalo, S., Jaco, I. et al. Nat. Struct. Mol. Biol., 15 (2008),p. 998
|
[6] |
Blair, K., Wray, J., Smith, A. The liberation of embryonic stem cells PLoS Genet., 7 (2011),p. e1002019
|
[7] |
Buehr, M., Meek, S., Blair, K. et al. Capture of authentic embryonic stem cells from rat blastocysts Cell, 135 (2008),pp. 1287-1298
|
[8] |
Burdon, T., Stracey, C., Chambers, I. et al. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells Dev. Biol., 210 (1999),pp. 30-43
|
[9] |
Calabrese, J.M., Seila, A.C., Yeo, G.W. et al. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 18097-18102
|
[10] |
Cao, Y., Guo, W.T., Tian, S. et al. miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency EMBO J., 34 (2015),pp. 609-623
|
[11] |
Chan, Y.S., Goke, J., Ng, J.H. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast Cell Stem Cell, 13 (2013),pp. 663-675
|
[12] |
Chen, J., Liu, H., Liu, J. et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs Nat. Genet., 45 (2013),pp. 34-42
|
[13] |
Davis, B.N., Hilyard, A.C., Lagna, G. et al. SMAD proteins control DROSHA-mediated microRNA maturation Nature, 454 (2008),pp. 56-61
|
[14] |
Di Leva, G., Garofalo, M., Croce, C.M. MicroRNAs in cancer Annu. Rev. Pathol., 9 (2014),pp. 287-314
|
[15] |
Dodsworth, B.T., Flynn, R., Cowley, S.A. The current state of naive human pluripotency Stem Cells, 33 (2015),pp. 3181-3186
|
[16] |
Ebert, M.S., Sharp, P.A. Roles for microRNAs in conferring robustness to biological processes Cell, 149 (2012),pp. 515-524
|
[17] |
Eisen, M.B., Spellman, P.T., Brown, P.O. et al. Cluster analysis and display of genome-wide expression patterns Proc. Natl. Acad. Sci. U. S. A., 95 (1998),pp. 14863-14868
|
[18] |
Ficz, G., Hore, T.A., Santos, F. et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency Cell Stem Cell, 13 (2013),pp. 351-359
|
[19] |
Gafni, O., Weinberger, L., Mansour, A.A. et al. Derivation of novel human ground state naive pluripotent stem cells Nature, 504 (2013),pp. 282-286
|
[20] |
Grabole, N., Tischler, J., Hackett, J.A. et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation EMBO Rep., 14 (2013),pp. 629-637
|
[21] |
Gu, K.L., Zhang, Q., Yan, Y. et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency Cell Res., 26 (2016),pp. 350-366
|
[22] |
Guo, W.T., Wang, X.W., Yan, Y.L. et al. Suppression of epithelial-mesenchymal transition and apoptotic pathways by miR-294/302 family synergistically blocks let-7-induced silencing of self-renewal in embryonic stem cells Cell Death Differ., 22 (2015),pp. 1158-1169
|
[23] |
Habibi, E., Brinkman, A.B., Arand, J. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells Cell Stem Cell, 13 (2013),pp. 360-369
|
[24] |
Hanna, J., Markoulaki, S., Mitalipova, M. et al. Metastable pluripotent states in NOD-mouse-derived ESCs Cell Stem Cell, 4 (2009),pp. 513-524
|
[25] |
Hirabayashi, M., Kato, M., Kobayashi, T. et al. Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency Mol. Reprod. Dev., 77 (2010),p. 94
|
[26] |
Hishida, T., Nozaki, Y., Nakachi, Y. et al. Indefinite self-renewal of ESCs through Myc/Max transcriptional complex-independent mechanisms Cell Stem Cell, 9 (2011),pp. 37-49
|
[27] |
Jouneau, A., Ciaudo, C., Sismeiro, O. et al. Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles RNA, 18 (2012),pp. 253-264
|
[28] |
Judson, R.L., Babiarz, J.E., Venere, M. et al. Embryonic stem cell-specific microRNAs promote induced pluripotency Nat. Biotechnol., 27 (2009),pp. 459-461
|
[29] |
Kanellopoulou, C., Muljo, S.A., Kung, A.L. et al. Genes Dev., 19 (2005),pp. 489-501
|
[30] |
Kawamata, M., Ochiya, T. Generation of genetically modified rats from embryonic stem cells Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 14223-14228
|
[31] |
Kim, V.N., Han, J., Siomi, M.C. Biogenesis of small RNAs in animals Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 126-139
|
[32] |
Kozomara, A., Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data Nucleic Acids Res., 39 (2011),pp. D152-D157
|
[33] |
Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment Development, 134 (2007),pp. 2895-2902
|
[34] |
Kuzmin, A., Han, Z., Golding, M.C. et al. Gene Expr. Patterns, 8 (2008),pp. 107-116
|
[35] |
Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
|
[36] |
Leitch, H.G., McEwen, K.R., Turp, A. et al. Naive pluripotency is associated with global DNA hypomethylation Nat. Struct. Mol. Biol., 20 (2013),pp. 311-316
|
[37] |
Li, P., Tong, C., Mehrian-Shai, R. et al. Germline competent embryonic stem cells derived from rat blastocysts Cell, 135 (2008),pp. 1299-1310
|
[38] |
Marks, H., Kalkan, T., Menafra, R. et al. The transcriptional and epigenomic foundations of ground state pluripotency Cell, 149 (2012),pp. 590-604
|
[39] |
Melton, C., Blelloch, R. MicroRNA regulation of embryonic stem cell self-renewal and differentiation Adv. Exp. Med. Biol., 695 (2010),pp. 105-117
|
[40] |
Melton, C., Judson, R.L., Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells Nature, 463 (2010),pp. 621-626
|
[41] |
Mendell, J.T., Olson, E.N. MicroRNAs in stress signaling and human disease Cell, 148 (2012),pp. 1172-1187
|
[42] |
Miri, K., Latham, K., Panning, B. et al. Development, 140 (2013),pp. 4480-4489
|
[43] |
Murchison, E.P., Partridge, J.F., Tam, O.H. et al. Characterization of Dicer-deficient murine embryonic stem cells Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 12135-12140
|
[44] |
Newman, M.A., Thomson, J.M., Hammond, S.M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing RNA, 14 (2008),pp. 1539-1549
|
[45] |
Nichols, J., Jones, K., Phillips, J.M. et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice Nat. Med., 15 (2009),pp. 814-818
|
[46] |
Nichols, J., Smith, A. Pluripotency in the embryo and in culture Cold Spring Harb. Perspect. Biol., 4 (2012),p. a008128
|
[47] |
Piskounova, E., Polytarchou, C., Thornton, J.E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms Cell, 147 (2011),pp. 1066-1079
|
[48] |
Rahl, P.B., Lin, C.Y., Seila, A.C. et al. c-Myc regulates transcriptional pause release Cell, 141 (2010),pp. 432-445
|
[49] |
Saldanha, A.J. Java Treeview–extensible visualization of microarray data Bioinformatics, 20 (2004),pp. 3246-3248
|
[50] |
Shi, R., Chiang, V.L. Facile means for quantifying microRNA expression by real-time PCR Biotechniques, 39 (2005),pp. 519-525
|
[51] |
Singh, S.K., Kagalwala, M.N., Parker-Thornburg, J. et al. REST maintains self-renewal and pluripotency of embryonic stem cells Nature, 453 (2008),pp. 223-227
|
[52] |
Sinkkonen, L., Hugenschmidt, T., Berninger, P. et al. Nat. Struct. Mol. Biol., 15 (2008),pp. 259-267
|
[53] |
Stavridis, M.P., Lunn, J.S., Collins, B.J. et al. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification Development, 134 (2007),pp. 2889-2894
|
[54] |
Takashima, Y., Guo, G., Loos, R. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human Cell, 158 (2014),pp. 1254-1269
|
[55] |
Tay, Y., Zhang, J., Thomson, A.M. et al. Nature, 455 (2008),pp. 1124-1128
|
[56] |
Tay, Y.M., Tam, W.L., Ang, Y.S. et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1 Stem Cells, 26 (2008),pp. 17-29
|
[57] |
Theunissen, T.W., Powell, B.E., Wang, H. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency Cell Stem Cell, 15 (2014),pp. 471-487
|
[58] |
Thornton, J.E., Chang, H.M., Piskounova, E. et al. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7) RNA, 18 (2012),pp. 1875-1885
|
[59] |
Valamehr, B., Robinson, M., Abujarour, R. et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells Stem Cell Rep., 2 (2014),pp. 366-381
|
[60] |
Viswanathan, S.R., Daley, G.Q., Gregory, R.I. Selective blockade of microRNA processing by Lin28 Science, 320 (2008),pp. 97-100
|
[61] |
Wang, J., Xie, G., Singh, M. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells Nature, 516 (2014),pp. 405-409
|
[62] |
Wang, L., Feng, Z., Wang, X. et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Bioinformatics, 26 (2010),pp. 136-138
|
[63] |
Wang, Y., Baskerville, S., Shenoy, A. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation Nat. Genet., 40 (2008),pp. 1478-1483
|
[64] |
Wang, Y., Medvid, R., Melton, C. et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal Nat. Genet., 39 (2007),pp. 380-385
|
[65] |
Wang, Y., Melton, C., Li, Y.P. et al. miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms Cell Rep., 4 (2013),pp. 99-109
|
[66] |
Ware, C.B., Nelson, A.M., Mecham, B. et al. Derivation of naive human embryonic stem cells Proc. Natl. Acad. Sci. U. S. A., 111 (2014),pp. 4484-4489
|
[67] |
Wray, J., Kalkan, T., Gomez-Lopez, S. et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation Nat. Cell Biol., 13 (2011),pp. 838-845
|
[68] |
Wray, J., Kalkan, T., Smith, A.G. The ground state of pluripotency Biochem. Soc. Trans., 38 (2010),pp. 1027-1032
|
[69] |
Yamaji, M., Ueda, J., Hayashi, K. et al. PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells Cell Stem Ccell, 12 (2013),pp. 368-382
|
[70] |
Ying, Q.L., Nichols, J., Chambers, I. et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3 Cell, 115 (2003),pp. 281-292
|
[71] |
Ying, Q.L., Wray, J., Nichols, J. et al. The ground state of embryonic stem cell self-renewal Nature, 453 (2008),pp. 519-523
|
[72] |
Yuan, H., Corbi, N., Basilico, C. et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3 Genes Dev., 9 (1995),pp. 2635-2645
|
[73] |
Zheng, G.X., Ravi, A., Gould, G.M. et al. Genome-wide impact of a recently expanded microRNA cluster in mouse Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 15804-15809
|