5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 11
Nov.  2016
Turn off MathJax
Article Contents

Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils

doi: 10.1016/j.jgg.2016.11.003
More Information
  • Corresponding author: E-mail address: hliao@fafu.edu.cn (Hong Liao)
  • Received Date: 2016-05-06
  • Accepted Date: 2016-11-07
  • Rev Recd Date: 2016-07-21
  • Available Online: 2016-11-11
  • Publish Date: 2016-11-20
  • Aluminum (Al) toxicity and phosphorous (P) deficiency are two major limiting factors for plant growth on acidic soils. Thus, the physiological mechanisms for Al tolerance and P acquisition have been intensively studied. A commonly observed trait is that plants have developed the ability to utilize organic acid anions (OAs; mainly malate, citrate and oxalate) to combat Al toxicity and P deficiency. OAs secreted by roots into the rhizosphere can externally chelate Al3+ and mobilize phosphate (Pi), while OAs synthesized in the cell can internally sequester Al3+ into the vacuole and release free Pi for metabolism. Molecular mechanisms involved in OA synthesis and transport have been described in detail. Ensuing genetic improvement for Al tolerance and P efficiency through increased OA exudation and/or synthesis in crops has been achieved by transgenic and marker-assisted breeding. This review mainly elucidates the crucial roles of OAs in plant Al tolerance and P efficiency through summarizing associated physiological mechanisms, molecular traits and genetic manipulation of crops.
  • loading
  • [1]
    Barber, S.A.
    [2]
    Cabral, L., Soares, C.R., Giachini, A.J. et al. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications World J. Microbiol. Biotechnol., 31 (2015),pp. 1655-1664
    [3]
    Chen, L.S., Tang, N., Jiang, H.X. et al. J. Plant Physiol., 166 (2009),pp. 1023-1034
    [4]
    Chen, Z.C., Yamaji, N., Motoyama, R. et al. Plant Physiol., 159 (2012),pp. 1624-1633
    [5]
    Chen, Z.C., Yokosho, K., Kashino, M. et al. Plant J., 76 (2013),pp. 10-23
    [6]
    Dakora, F.D., Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments Plant Soil, 245 (2002),pp. 35-47
    [7]
    de la Fuente, J.M., Ramirez-Rodriguez, V., Cabrera-Ponce, J.L. et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis Science, 276 (1997),pp. 1566-1568
    [8]
    Delhaize, E., Hebb, D.M., Ryan, P.R. Plant Physiol., 125 (2001),pp. 2059-2067
    [9]
    Delhaize, E., Ma, J.F., Ryan, P.R. Transcriptional regulation of aluminium tolerance genes Trends Plant Sci., 17 (2012),pp. 341-348
    [10]
    Delhaize, E., Ryan, P.R., Randall, P.J. Plant Physiol., 103 (1993),pp. 695-702
    [11]
    Delhaize, E., Taylor, P., Hocking, P.J. et al. Plant Biotechnol. J., 7 (2009),pp. 391-400
    [12]
    Dong, D., Peng, X., Yan, X. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes Physiol. Plant, 122 (2004),pp. 190-199
    [13]
    Famoso, A.N., Zhao, K., Clark, R.T. et al. PLoS Genet., 7 (2011),p. e1002221
    [14]
    Furukawa, J., Yamaji, N., Wang, H. et al. An aluminum-activated citrate transporter in barley Plant Cell Physiol., 48 (2007),pp. 1081-1091
    [15]
    Gardner, W.K., Parbery, D.G., Barber, D.A. Plant Soil, 68 (1982),pp. 33-41
    [16]
    Gaume, A., Mächler, F., De León, C. et al. Plant Soil, 228 (2001),pp. 253-264
    [17]
    Gruber, B.D., Ryan, P.R., Richardson, A.E. et al. HvALMT1 from barley is involved in the transport of organic anions J. Exp. Bot., 61 (2010),pp. 1455-1467
    [18]
    Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review Plant Soil, 237 (2001),pp. 173-195
    [19]
    Hoekenga, O.A., Maron, L.G., Piñeros, M.A. et al. Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 9738-9743
    [20]
    Huang, C.F., Yamaji, N., Chen, Z. et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice Plant J., 69 (2012),pp. 857-867
    [21]
    Illmer, P., Barbato, A., Schinner, F. Soil Biol. Biochem., 27 (1995),pp. 265-270
    [22]
    Inostroza-Blancheteau, C., Soto, B., Ibáñez, C. et al. Mapping aluminum tolerance loci in cereals: a tool available for crop breeding Electron. J. Biotechnol., 13 (2010),pp. 1-12
    [23]
    Jemo, M., Abaidoo, R.C., Nolte, C. et al. Aluminum resistance of cowpea as affected by phosphorus-deficiency stress J. Plant Physiol., 164 (2007),pp. 442-451
    [24]
    Jones, D.L. Organic acids in the rhizosphere–a critical review Plant Soil, 205 (1998),pp. 25-44
    [25]
    Jones, D.L., Brassington, D.S. Sorption of organic acids in acid soils and its implications in the rhizosphere Eur. J. Soil Sci., 49 (1998),pp. 447-455
    [26]
    Keerthisinghe, G., Hocking, P.J., Ryan, P.R. et al. Plant Cell Environ., 21 (1998),pp. 467-478
    [27]
    Kiers, E.T., Duchamel, M., Beesetty, Y. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis Science, 333 (2011),pp. 880-882
    [28]
    Kihara, T., Wada, T., Suzuki, Y. et al. Alteration of citrate metabolism in cluster roots of white lupin Plant Cell Physiol., 44 (2003),pp. 901-908
    [29]
    Kirk, G.J.D., Santos, E.E., Findenegg, G.R. Plant Soil, 211 (1999),pp. 11-18
    [30]
    Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 46 (1995),pp. 237-260
    [31]
    Kochian, L.V., Hoekenga, O.A., Piñeros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency Annu. Rev. Plant Biol., 55 (2004),pp. 459-493
    [32]
    Koyama, H., Kawamura, A., Kihara, T. et al. Plant Cell Physiol., 41 (2000),pp. 1030-1037
    [33]
    Kucey, R.M.N., Janzen, H.H., Leggett, M.E. Microbial mediated increases in plant available phosphorus Adv. Agron., 42 (1989),pp. 199-228
    [34]
    Lazof, D.B., Goldsmith, J.G., Rufty, T.W. et al. Rapid uptake of aluminum into cells of intact soybean root tips (a microanalytical study using secondary ion mass spectrometry) Plant Physiol., 106 (1994),pp. 1107-1114
    [35]
    Lee, R.B., Ratcliffe, R.G., Southon, T.E. J. Exp. Bot., 41 (1990),pp. 1063-1078
    [36]
    Li, X.F., Zuo, F.H., Ling, G.Z. et al. Plant Soil, 325 (2009),pp. 219-229
    [37]
    Liang, C.Y., Piñeros, M.A., Tian, J. et al. Plant Physiol., 161 (2013),pp. 1347-1361
    [38]
    Liang, C.Y., Wang, J.X., Zhao, J. et al. Control of phosphate homeostasis through gene regulation in crops Curr. Opin. Plant Biol., 21 (2014),pp. 59-66
    [39]
    Liao, H., Wan, H.Y., Shaff, J. et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system Plant Physiol., 141 (2006),pp. 674-684
    [40]
    Libert, B., Franceschi, V.R. Oxalate in crop plants J. Agric. Food Chem., 35 (1987),pp. 926-938
    [41]
    Ligaba, A., Yamaguchi, M., Shen, H. et al. Funct. Plant Biol., 31 (2004),pp. 1075-1083
    [42]
    Liu, J.P., Luo, X.Y., Shaff, J. et al. Plant J., 71 (2012),pp. 327-337
    [43]
    López-Bucio, J., de La Vega, O.M., Guevara-García, A. et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate Nat. Biotechnol., 18 (2000),pp. 450-453
    [44]
    López-Bucio, J., Nieto-Jacobo, M.F., Ramírez-Rodríguez, V. et al. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils Plant Sci., 160 (2000),pp. 11-13
    [45]
    Lou, H.Q., Gong, Y.L., Fan, W. et al. A formate dehydrogenase confers tolerance to aluminum and low pH Plant Physiol., 171 (2016),pp. 294-305
    [46]
    Lü, J., Gao, X.R., Dong, Z.M. et al. Plant Cell Rep., 31 (2012),pp. 49-56
    [47]
    Lundström, U.S., van Breemen, N., Jongmans, A.G. Evidence for microbial decomposition of organic acids during podzolization Eur. J. Soil Sci., 46 (1995),pp. 489-496
    [48]
    Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops Plant Physiol., 156 (2011),pp. 1041-1049
    [49]
    Ma, J.F. Role of organic acids in detoxification of aluminum in higher plants Plant Cell Physiol., 41 (2000),pp. 383-390
    [50]
    Ma, J.F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants Int. Rev. Cytol., 264 (2007),pp. 225-252
    [51]
    Ma, J.F., Ryan, P.R., Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids Trends Plant Sci., 6 (2001),pp. 273-278
    [52]
    Ma, J.F., Zheng, S.J., Matsumoto, H. et al. Detoxifying aluminium with buckwheat Nature, 390 (1997),pp. 569-570
    [53]
    Magalhaes, J.V., Liu, J.P., Guimarães, C.T. et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum Nat. Genet., 39 (2007),pp. 1156-1161
    [54]
    Macklon, A.E.S., Lumsdon, D.G., Sim, A. et al. J. Exp. Bot., 47 (1996),pp. 793-803
    [55]
    Marschner, H.
    [56]
    Martin, R.B.
    [57]
    Melo, J.O., Lana, U.G., Pineros, M.A. et al. Plant J., 73 (2013),pp. 276-288
    [58]
    Neumann, G., Martinoia, E. Cluster roots – an underground adaptation for survival in extreme environments Trends Plant Sci., 7 (2002),pp. 162-167
    [59]
    Neumann, G., Massonneau, A., Langlade, N. et al. Ann. Bot., 85 (2000),pp. 909-919
    [60]
    Osorio, N.W.
    [61]
    Rangel, A.F., Rao, I.M., Braun, H.P. et al. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices Physiol. Plant, 138 (2010),pp. 176-190
    [62]
    Rouached, H., Arpat, A.B., Poirier, Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks Mol. Plant, 3 (2010),pp. 288-299
    [63]
    Ryan, P.R., Delhaize, E., Jones, D. Function and mechanism of organic anion exudation from plant roots Annu. Rev. Plant Physiol. Plant Mol. Biol., 52 (2001),pp. 527-560
    [64]
    Ryan, P.R., Ditomaso, J.M., Kochian, L.V. Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap J. Exp. Bot., 44 (1993),pp. 437-446
    [65]
    Ryan, P.R., Raman, H., Gupta, S. et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots Plant Physiol., 149 (2009),pp. 340-351
    [66]
    Ryan, P.R., Tyerman, S.D., Sasaki, T. et al. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils J. Exp. Bot., 62 (2011),pp. 9-20
    [67]
    Sasaki, T., Yamamoto, Y., Ezaki, B. et al. A wheat gene encoding an aluminum-activated malate transporter Plant J., 37 (2004),pp. 645-653
    [68]
    Schachtman, D.P., Reid, R.J., Ayling, S.M. Phosphorus uptake by plants: from soil to cell Plant Physiol., 116 (1998),pp. 447-453
    [69]
    Shane, M.W., Lambers, H. Cluster roots: a curiosity in context Plant Soil, 274 (2005),pp. 101-125
    [70]
    Shen, J., Rengel, Z., Tang, C. et al. Plant Soil, 248 (2003),pp. 199-206
    [71]
    Shen, R.F., Iwashita, T., Ma, J.F. Form of Al changes with Al concentration in leaves of buckwheat J. Exp. Bot., 55 (2004),pp. 131-136
    [72]
    Shen, R.F., Ma, J.F., Kyo, M. et al. Planta, 215 (2002),pp. 394-398
    [73]
    Silva, I.R., Smyth, T.J., Raper, C.D. et al. Differential aluminum tolerance in soybean: an evaluation of the role of organic acids Physiol. Plant., 112 (2001),pp. 200-210
    [74]
    Singh, K., Sasakuma, T., Bughio, N. et al. Ability of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiency J. Plant Nutr., 23 (2000),pp. 1973-1981
    [75]
    Sun, L.L., Liang, C.Y., Chen, Z.J. et al. New Phytol., 202 (2014),pp. 209-219
    [76]
    Sun, L.L., Tian, J., Zhang, H.Y. et al. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity J. Exp. Bot., 67 (2016),pp. 3655-3664
    [77]
    Tesfaye, M., Temple, S.J., Allan, D.L. et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum Plant Physiol., 127 (2001),pp. 1836-1844
    [78]
    Tian, J., Wang, X.R., Tong, Y.P. et al. Bioengineering and management for efficient phosphorus utilization in crops and pastures Curr. Opin. Biotechnol., 23 (2012),pp. 1-6
    [79]
    Vance, C.P., Uhde-Stone, C., Allan, D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource New Phytol., 157 (2003),pp. 423-447
    [80]
    Wang, B.L., Shen, J.B., Zhang, W.H. et al. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum New Phytol., 176 (2007),pp. 581-589
    [81]
    Wang, X.R., Wang, Y.X., Tian, J. et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean Plant Physiol., 151 (2009),pp. 233-240
    [82]
    Wang, Y., Xu, H., Kou, J. et al. Plant Soil, 362 (2013),pp. 231-246
    [83]
    Watt, M., Evans, J.R. Plant Physiol., 120 (1999),pp. 705-716
    [84]
    Whitelaw, M.A. Growth promotion of plants inoculated with phosphate-solubilizing fungi Adv. Agron., 69 (2000),pp. 99-151
    [85]
    Wright, D.P., Read, D.J., Scholes, J.D. Plant Cell Environ., 21 (1998),pp. 881-891
    [86]
    Xia, J.X., Yamaji, N., Kasai, T. et al. Plasma membrane localized transporter for aluminum in rice Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 18381-18385
    [87]
    Yang, J.L., Zhu, X.F., Peng, Y.X. et al. Planta, 234 (2011),pp. 281-291
    [88]
    Yang, X.Y., Yang, J.L., Zhou, Y. et al. Plant Cell Environ., 34 (2011),pp. 2138-2148
    [89]
    Yokosho, K., Yamaji, N., Ma, J.F. Plant J., 68 (2011),pp. 1061-1069
    [90]
    Zhang, Z., Liao, H., Lucas, W.J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants J. Integr. Plant Biol., 56 (2014),pp. 192-220
    [91]
    Zhao, Y., Zhang, C., Liu, W. et al. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design Sci. Rep., 6 (2016),p. 23890
    [92]
    Zheng, S.J., Ma, J.F., Matsumoto, H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips Plant Physiol., 117 (1998),pp. 745-751
    [93]
    Zhou, G., Delhaize, E., Zhou, M. et al. Ann. Bot., 112 (2013),pp. 603-612
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (260) PDF downloads (27) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return