[1] |
Ai, P.H., Sun, S.B., Zhao, J.N. et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation Plant J., 57 (2009),pp. 798-809
|
[2] |
Azevedo, G.C., Cheavegatti-Gianotto, A., Negri, B.F. et al. BMC Plant Biol., 15 (2015),pp. 172-188
|
[3] |
Bremner, J.M.
|
[4] |
Cai, H., Chen, F., Mi, G. et al. Theor. Appl. Genet., 125 (2012),pp. 1313-1324
|
[5] |
Cakmak, I. Plant nutrition research: priorities to meet human needs for food in sustainable ways Plant Soil, 247 (2002),pp. 3-24
|
[6] |
Calderon-Vazquez, C., Ibarra-Laclette, E., Caballero-Perez, J. et al. J. Exp. Bot., 59 (2008),pp. 2479-2497
|
[7] |
Chen, J., Xu, L., Cai, Y. et al. Plant Soil, 313 (2008),pp. 251-266
|
[8] |
Chen, J., Xu, L., Cai, Y. et al. Euphytica, 167 (2009),pp. 245-252
|
[9] |
Chen, J., Cai, Y., Xu, L. et al. Front. Agric. China, 5 (2011),pp. 152-161
|
[10] |
Chin, J.H., Lu, X., Haefele, S.M. et al. Theor. Appl. Genet., 120 (2010),pp. 1073-1086
|
[11] |
Cordell, D., Drangert, J.O., White, S. The story of phosphorus: global food security and food for thought Glob. Environ. Change, 19 (2009),pp. 292-305
|
[12] |
Corrales, I., Amenos, M., Poschenrieder, C. et al. Phosphorus efficiency and root exudates in two contrasting tropical maize varieties J. Plant Nutr., 30 (2007),pp. 887-900
|
[13] |
Dodds, W.K., Bouska, W.W., Eitzmann, J.L. et al. Eutrophication of U.S. freshwaters: analysis of potential economic damages Environ. Sci. Technol., 43 (2009),pp. 12-19
|
[14] |
Gamuyao, R., Chin, J.H., Pariasca-Tanaka, J. et al. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency Nature, 488 (2012),pp. 535-539
|
[15] |
Gaume, A., Machler, F., De Leon, C. et al. Plant Soil, 228 (2001),pp. 253-264
|
[16] |
Gu, R., Duan, F., An, Xia, Zhang, F. et al. Plant Cell Physiol., 54 (2013),pp. 1515-1524
|
[17] |
Hermans, C., Hammond, J.P., White, P.J. et al. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., 11 (2006),pp. 610-617
|
[18] |
Hochholdinger, F., Zimmermann, R. Conserved and diverse mechanisms in root development Curr. Opin. Plant Biol., 11 (2008),pp. 70-74
|
[19] |
Hufnagel, B., De Sousa, S.M., Assis, L. et al. Plant Physiol., 166 (2014),pp. 659-677
|
[20] |
Lambers, H., Raven, J.A., Shaver, G.R. et al. Plant nutrient-acquisition strategies change with soil age Trends Ecol. Evol., 23 (2008),pp. 95-103
|
[21] |
Li, M., Guo, X., Zhang, M. et al. Plant Sci., 178 (2010),pp. 454-462
|
[22] |
Liu, Y., Mi, G.H., Chen, F.J. et al. Plant Sci., 167 (2004),pp. 217-223
|
[23] |
Liu, J., Li, J., Chen, F. et al. Plant Soil, 305 (2008),pp. 253-265
|
[24] |
Liu, J., Chen, F., Olokhnuud, C. et al. J. Plant Nutr. Soil Sci., 172 (2009),pp. 230-236
|
[25] |
Liu, J., Cai, H., Chu, Q. et al. Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations Mol. Breed., 28 (2011),pp. 463-474
|
[26] |
Liu, H., White, P., Li, C.J. Biomass partitioning and rhizosphere responses of maize and faba bean to phosphorus deficiency Crop Pasture Sci., 67 (2016),pp. 847-856
|
[27] |
Lynch, J. The role of nutrient-efficient crops in modern agriculture J. Crop Prod., 1 (1998),pp. 241-264
|
[28] |
Lynch, J.P., Brown, K.M. Topsoil foraging an architectural adaptation of plants to low phosphorus availability Plant Soil, 237 (2001),pp. 225-237
|
[29] |
Ma, Q., Rengel, Z., Rose, T. The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in mediterranean-type environments: a review Aust. J. Soil Res., 47 (2009),pp. 19-32
|
[30] |
Manske, G.G.B., Ortiz-Monasterio, J.I., Van Ginkel, M. et al. Eur. J. Agron., 14 (2001),pp. 261-274
|
[31] |
Marschner, H.
|
[32] |
Mendes, F.F., Guimaraes, L.J.M., Souza, J.C. et al. Genetic architecture of phosphorus use efficiency in tropical maize cultivated in a low-P soil Crop Sci., 54 (2014),pp. 1530-1538
|
[33] |
Miao, J., Sun, J.H., Liu, D.C. et al. Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties J. Genet. Genomics, 36 (2009),pp. 455-466
|
[34] |
Miguel, M.A., Postma, J.A., Lynch, J.P. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition Plant Physiol., 167 (2015),pp. 1430-1439
|
[35] |
Mitsukawa, N., Okumura, S., Shirano, Y. et al. Proc. Natl. Acad. Sci. U.S.A., 94 (1997),pp. 7098-7102
|
[36] |
Moll, R.H., Kamprath, E.J., Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen-utilization Agron. J., 74 (1982),pp. 562-564
|
[37] |
Murphy, J., Riley, J.P. A modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta, 27 (1962),pp. 31-36
|
[38] |
Nagy, R., Vasconcelos, M.J.V., Zhao, S. et al. Plant Biol., 8 (2006),pp. 186-197
|
[39] |
Nyquist, W.E. Estimation of heritability and prediction of selection response in plant-populations Crit. Rev. Plant Sci., 10 (1991),pp. 235-322
|
[40] |
Olsen, S.R., Cole, C.V., Watanabe, F.S. et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate U.S. Dept. Agric. Circ. 939 (1954),pp. 1-19
|
[41] |
Parentoni, S.N., De Souza Junior, C.L. Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes Pesqui. Agropecu. Bras., 43 (2008),pp. 893-901
|
[42] |
Parentoni, S.N., , De Carvalho Alves, V.M., Gama, E.E.G. et al. Maydica, 55 (2010),pp. 1-15
|
[43] |
Pariasca-Tanaka, J., Chin, J.H., Drame, K.N. et al. Theor. Appl. Genet., 127 (2014),pp. 1387-1398
|
[44] |
Postma, J.A., Dathe, A., Lynch, J.P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability Plant Physiol., 166 (2014),pp. 590-602
|
[45] |
Qin, L., Guo, Y.X., Chen, L.Y. et al. PLoS One, 7 (2012),p. e47726
|
[46] |
Raghothama, K. Phosphate acquisition Annu. Rev. Plant Physiol. Plant Mol. Biol., 50 (1999),pp. 665-693
|
[47] |
Rose, T.J., Impa, S.M., Rose, M.T. et al. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding Ann. Bot., 112 (2013),pp. 331-345
|
[48] |
Shen, H., Chen, J.H., Wang, Z.Y. et al. J. Exp. Bot., 57 (2006),pp. 1353-1362
|
[49] |
Shen, J., Yuan, L., Zhang, J. et al. Phosphorus dynamics: from soil to plant Plant Physiol., 156 (2011),pp. 997-1005
|
[50] |
Shenoy, V.V., Kalagudi, G.M. Enhancing plant phosphorus use efficiency for sustainable cropping Biotechnol. Adv., 23 (2005),pp. 501-513
|
[51] |
Shin, H., Shin, H., Dewbre, G.R. et al. Plant J., 39 (2004),pp. 629-642
|
[52] |
De Sousa, S.M., Clark, R.T., Mendes, F.F. et al. A role for root morphology and related candidate genes in P acquisition efficiency in maize Funct. Plant Biol., 39 (2012),pp. 925-935
|
[53] |
Usuda, H., Shimogawara, K. Phosphate deficiency in maize.I. leaf phosphate status, growth, photosynthesis and carbon partitioning Plant Cell Physiol., 32 (1991),pp. 497-504
|
[54] |
Vance, C.P., Uhde-Stone, C., Allan, D.L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource New Phytol., 157 (2003),pp. 423-447
|
[55] |
Veneklaas, E.J., Lambers, H., Bragg, J. et al. Opportunities for improving phosphorus-use efficiency in crop plants New Phytol., 195 (2012),pp. 306-320
|
[56] |
Walkley, A. A critical examination of a rapid method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents Soil Sci., 63 (1947),pp. 251-264
|
[57] |
Wang, L.D., Liao, H., Yan, X.L. et al. Genetic variability for root hair traits as related to phosphorus status in soybean Plant Soil, 261 (2004),pp. 77-84
|
[58] |
Wang, X., Shen, J., Liao, H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci., 179 (2010),pp. 302-306
|
[59] |
Wang, X., Yan, X., Liao, H. Genetic improvement for phosphorus efficiency in soybean: a radical approach Ann. Bot., 106 (2010),pp. 215-222
|
[60] |
Wang, S., Basten, C., Zeng, Z.
|
[61] |
White, P.J., George, T.S., Gregory, P.J. et al. Matching roots to their environment Ann. Bot., 112 (2013),pp. 207-222
|
[62] |
Wissuwa, M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects Plant Physiol., 133 (2003),pp. 1947-1958
|
[63] |
Wissuwa, M. Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake Plant Soil, 269 (2005),pp. 57-68
|
[64] |
Zhang, H., Uddin, M.S., Zou, C. et al. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize J. Integr. Plant Biol., 56 (2014),pp. 262-270
|
[65] |
Zhao, J., Fu, J.B., Liao, H. et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm Chin. Sci. Bull., 49 (2004),pp. 1611-1620
|
[66] |
Zhu, J.M., Lynch, J.P. Funct. Plant Biol., 31 (2004),pp. 949-958
|
[1] | Chao Han, Lingyan Wang, Jinyang Lyu, Wen Shi, Lianmei Yao, Min Fan, Ming-Yi Bai. Brassinosteroid signaling and molecular crosstalk with nutrients in plants[J]. Journal of Genetics and Genomics, 2023, 50(8): 541-553. doi: 10.1016/j.jgg.2023.03.004 |
[2] | Lei Gao, Haifang Jiang, Minze Li, Danfeng Wang, Hongtao Xiang, Rong Zeng, Limei Chen, Xiaoyan Zhang, Jianru Zuo, Shuhua Yang, Yiting Shi. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.07.004 |
[3] | Mingjie Lyu, Huafeng Liu, Joram Kiriga Waititu, Ying Sun, Huan Wang, Junjie Fu, Yanhui Chen, Jun Liu, Lixia Ku, Xiliu Cheng. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize[J]. Journal of Genetics and Genomics, 2021, 48(11): 961-971. doi: 10.1016/j.jgg.2021.07.010 |
[4] | Wen Yao, Guangwei Li, Yanru Cui, Yiming Yu, Qifa Zhang, Shizhong Xu. Mapping quantitative trait loci using binned genotypes[J]. Journal of Genetics and Genomics, 2019, 46(7): 343-352. doi: 10.1016/j.jgg.2019.06.005 |
[5] | Jacob D. Washburn, Mitchell J. McElfresh, James A. Birchler. Progressive heterosis in genetically defined tetraploid maize[J]. Journal of Genetics and Genomics, 2019, 46(8): 389-396. doi: 10.1016/j.jgg.2019.02.010 |
[6] | Tian Tian, Qi You, Hengyu Yan, Wenying Xu, Zhen Su. MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels[J]. Journal of Genetics and Genomics, 2018, 45(7): 351-360. doi: 10.1016/j.jgg.2018.05.007 |
[7] | Jinjie Zhu, Ning Song, Silong Sun, Weilong Yang, Haiming Zhao, Weibin Song, Jinsheng Lai. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9[J]. Journal of Genetics and Genomics, 2016, 43(1): 25-36. doi: 10.1016/j.jgg.2015.10.006 |
[8] | Chao Feng, Jing Yuan, Rui Wang, Yang Liu, James A. Birchler, Fangpu Han. Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System[J]. Journal of Genetics and Genomics, 2016, 43(1): 37-43. doi: 10.1016/j.jgg.2015.10.002 |
[9] | Carson M. Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E. Koch, M. Elizabeth Stroupe, Carolyn J. Lawrence, Hank W. Bass. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation[J]. Journal of Genetics and Genomics, 2014, 41(12): 627-647. doi: 10.1016/j.jgg.2014.10.004 |
[10] | Stefanie Dukowic-Schulze, Anthony Harris, Junhua Li, Anitha Sundararajan, Joann Mudge, Ernest F. Retzel, Wojciech P. Pawlowski, Changbin Chen. Comparative Transcriptomics of Early Meiosis in Arabidopsis and Maize[J]. Journal of Genetics and Genomics, 2014, 41(3): 139-152. doi: 10.1016/j.jgg.2013.11.007 |
[11] | Shulan Fu, Zhi Gao, James Birchler, Fangpu Han. Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants[J]. Journal of Genetics and Genomics, 2012, 39(3): 125-130. doi: 10.1016/j.jgg.2012.01.006 |
[12] | Guo Zong, Ahong Wang, Lu Wang, Guohua Liang, Minghong Gu, Tao Sang, Bin Han. A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004 |
[13] | Xifeng Chen, Zhimin Gu, Dedong Xin, Liang Hao, Chengjie Liu, Ji Huang, Bojun Ma, Hongsheng Zhang. Identification and characterization of putative CIPK genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2): 77-87. doi: 10.1016/j.jcg.2011.01.005 |
[14] | Junzhou Li, Deping Wang, Yan Xie, Hongliang Zhang, Guanglong Hu, Jinjie Li, Anyong Dai, Lifeng Liu, Zichao Li. Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes[J]. Journal of Genetics and Genomics, 2011, 38(11): 547-556. doi: 10.1016/j.jgg.2011.08.005 |
[15] | Rick E. Masonbrink, James A. Birchler. Sporophytic nondisjunction of the maize B chromosome at high copy numbers[J]. Journal of Genetics and Genomics, 2010, 37(1): 79-84. doi: 10.1016/S1673-8527(09)60027-8 |
[16] | Junzhou Li, Yan Xie, Anyong Dai, Lifeng Liu, Zichao Li. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice[J]. Journal of Genetics and Genomics, 2009, 36(3): 173-183. doi: 10.1016/S1673-8527(08)60104-6 |
[17] | David S. Skibbe, Xiujuan Wang, Lisa A. Borsuk, Daniel A. Ashlock, Dan Nettleton, Patrick S. Schnable. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death[J]. Journal of Genetics and Genomics, 2008, 35(10): 603-616. doi: 10.1016/S1673-8527(08)60081-8 |
[18] | Kunpu Zhang, Jichun Tian, Liang Zhao, Shanshan Wang. Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat[J]. Journal of Genetics and Genomics, 2008, 35(2): 119-127. doi: 10.1016/S1673-8527(08)60017-X |
[19] | Yijun Wang, Guangming Yin, Qin Yang, Jihua Tang, Xiaomin Lu, Schuyler S. Korban, Mingliang Xu. Identification and isolation of Mu-flanking fragments from maize[J]. Journal of Genetics and Genomics, 2008, 35(4): 207-213. doi: 10.1016/S1673-8527(08)60029-6 |
[20] | Chuanxiao Xie, Shihuang Zhang, Minshun Li, Xinhai Li, Zhuanfang Hao, Li Bai, Degui Zhang, Yehong Liang. Inferring Genome Ancestry and Estimating Molecular Relatedness Among 187 Chinese Maize Inbred Lines[J]. Journal of Genetics and Genomics, 2007, 34(8): 738-748. doi: 10.1016/S1673-8527(07)60083-6 |