5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 11
Nov.  2016
Turn off MathJax
Article Contents

The OsAMT1.1 gene functions in ammonium uptake and ammonium–potassium homeostasis over low and high ammonium concentration ranges

doi: 10.1016/j.jgg.2016.11.001
More Information
  • Corresponding author: E-mail address: ghxu@njau.edu.cn (Guohua Xu)
  • Received Date: 2016-06-29
  • Accepted Date: 2016-11-03
  • Rev Recd Date: 2016-09-16
  • Available Online: 2016-11-05
  • Publish Date: 2016-11-20
  • Rice (Oryza sativa) grown in paddy fields is an ammonium (NH4+)-preferring crop; however, its AMT-type NH4+ transporters that mediate root N acquisition have not been well characterized yet. In this study, we analyzed the expression pattern and physiological function of the OsAMT1.1 gene of the AMT1 subfamily in rice. OsAMT1.1 is located in the plasma membrane and is mainly expressed in the root epidermis, stele and mesophyll cells. Disruption of the OsAMT1.1 gene decreased the uptake of NH4+, and the growth of roots and shoots under both low NH4+ and high NH4+ conditions. OsAMT1.1 contributed to the short-term (5 min) 15NH4+ influx rate by approximately one-quarter, irrespective of the NH4+ concentration. Knockout of OsAMT1.1 significantly decreased the total N transport from roots to shoots under low NH4+ conditions. Moreover, compared with the wild type, the osamt1.1 mutant showed an increase in the potassium (K) absorption rate under high NH4+ conditions and a decrease under low NH4+ conditions. The mutants contained a significantly high concentration of K in both the roots and shoots at a limited K (0.1 mmol/L) supply when NH4+ was replete. Taken together, the results indicated that OsAMT1.1 significantly contributes to the NH4+ uptake under both low and high NH4+ conditions and plays an important role in N–K homeostasis in rice.
  • loading
  • [1]
    Ai, P.H., Sun, S.B., Zhao, J.N. et al. Two rice phosphate transporters, OsPht1.2 and OsPht1.6, have different functions and kinetic properties in uptake and translocation Plant J., 57 (2009),pp. 798-809
    [2]
    Ben-Zioni, A., Vaadia, Y., Herman, L.S. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot Physiol. Plant, 24 (1971),pp. 288-290
    [3]
    Britto, D.T., Kronzucker, H.J. J. Plant Physiol., 159 (2002),pp. 567-584
    [4]
    Chen, G., Guo, S., Kronzucker, H.J. et al. Plant Soil, 369 (2013),pp. 351-363
    [5]
    Chen, G., Hu, Q., Luo, L. et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges Plant Cell Environ., 38 (2015),pp. 2747-2765
    [6]
    Coskun, D., Britto, D.T., Kronzucker, H.J. New Phytol., 188 (2010),pp. 1028-1038
    [7]
    Coskun, D., Britto, D.T., Li, M. et al. Plant Physiol., 162 (2013),pp. 496-511
    [8]
    Coskun, D., Dev, T.B., Kronzucker, H.J. The nitrogen–potassium intersection: membranes, metabolism, and mechanism Plant Cell Environ. (2016)
    [9]
    Feng, H.M., Yan, M., Fan, X.R. et al. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status J. Exp. Bot., 62 (2011),pp. 2319-2332
    [10]
    Freney, J.R., Leuning, R., Simpton, J.R. et al. Estimating ammonia volatilization from flooded rice fields by simplified techniques Soil Sci. Soc. Am. J., 49 (1985),pp. 1049-1054
    [11]
    Gierth, M., Mäser, P. FEBS Lett., 581 (2007),pp. 2348-2356
    [12]
    Hoque, M.H., Masle, J., Udvardi, M.K. et al. Funct. Plant Biol., 33 (2006),pp. 153-163
    [13]
    Ivashikina, N., Becker, D., Ache, P. et al. FEBS Lett., 508 (2001),pp. 463-469
    [14]
    Jia, H., Ren, H., Gu, M. et al. Plant Physiol., 156 (2011),pp. 1164-1175
    [15]
    Kaiser, B.N., Rawat, S.R., Siddiqi, M.Y. et al. Plant Physiol., 130 (2002),pp. 1263-1275
    [16]
    Karasawa, T., Hayakawa, T., Mae, T. et al. Characteristics of ammonium uptake by rice cells in suspension culture Soil Sci. Plant Nutr., 40 (1994),pp. 333-338
    [17]
    Khademi, S., O'Connell, J., Remis, J. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.3.5 angstrom Science, 305 (2004),pp. 1587-1594
    [18]
    Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M. Plant Physiol., 110 (1996),pp. 773-779
    [19]
    Li, B.Z., Xin, W.J., Sun, S.B. et al. Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources Plant Soil, 287 (2006),pp. 145-159
    [20]
    Livak, K.J., Schmittgen, T.D. Methods, 25 (2001),pp. 402-408
    [21]
    Loque, D., von Wiren, N. Regulatory levels for the transport of ammonium in plant roots J. Exp. Bot., 55 (2004),pp. 1293-1305
    [22]
    Loque, D., Yuan, L., Kojima, S. et al. Additive contribution of AMT1.1 and AMT1.3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots Plant J., 48 (2006),pp. 522-534
    [23]
    Mäck, G., Tischner, R. J. Plant Physiol., 144 (1994),pp. 351-357
    [24]
    Marini, A.M., Vissers, S., Urrestarazu, A. et al. EMBO J., 13 (1994),pp. 3456-3463
    [25]
    Miao, J., Guo, D.S., Zhang, J.Z. et al. Targeted mutagenesis in rice using CRISPR-Cas system Cell Res., 23 (2013),pp. 1233-1236
    [26]
    Miller, A.J., Fan, X., Orsel, M. et al. Nitrate transport and signalling J. Exp. Bot., 58 (2007),pp. 2297-2306
    [27]
    Ninnemann, O., Jauniaux, J.C., Frommer, W.B. EMBO J., 13 (1994),pp. 3464-3471
    [28]
    Ranathunge, K., EI-Kereamy, A., Gidda, S. et al. J. Exp. Bot., 65 (2014),pp. 965-979
    [29]
    Santa-María, G.E., Danna, C.H., Czibener, C. High-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways Plant Physiol., 123 (2000),pp. 297-306
    [30]
    Sasakawa, H., Yamamoto, Y. Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors Plant Physiol., 62 (1978),pp. 665-669
    [31]
    Sonoda, Y., Ikeda, A., Saiki, S. et al. Plant Cell Physiol., 44 (2003),pp. 726-734
    [32]
    Sonoda, Y., Ikeda, A., Saiki, S. et al. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice Plant Cell Physiol., 44 (2003),pp. 1396-1402
    [33]
    Spalding, E.P., Hirsch, R.E., Lewis, D.R. et al. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. Inhibition by ammonium and stimulation by sodium J. Gen. Physiol., 113 (1999),pp. 909-918
    [34]
    Suenaga, A., Moriya, K., Sonoda, Y. et al. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants Plant Cell Physiol., 44 (2003),pp. 206-211
    [35]
    Szczerba, M.W., Britto, D.T., Balkos, K.D. et al. J. Exp. Bot., 59 (2008),pp. 303-313
    [36]
    Szczerba, M.W., Britto, D.T., Shabana, A.A. et al. J. Exp. Bot., 59 (2008),pp. 3415-3423
    [37]
    Tabuchi, M., Abiko, T., Yamaya, T. J. Exp. Bot., 58 (2007),pp. 2319-2327
    [38]
    Tang, Z., Fan, X., Li, Q. et al. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx Plant Physiol., 160 (2012),pp. 2052-2063
    [39]
    ten Hoopen, F., Cuin, T.A., Pedas, P. et al. J. Exp. Bot., 61 (2010),pp. 2303-2315
    [40]
    Topa, M.A., Jackson, W.A. Influence of ambient ammonium on net potassium uptake by decapitated maize seedlings New Phytol., 110 (1988),pp. 135-141
    [41]
    Ullrich, W.R., Larsson, M., Larsson, C.M. et al. Physiol. Plant, 61 (1984),pp. 369-376
    [42]
    Wang, M.Y., Glass, A.D.M., Shaff, J.E. et al. Ammonium uptake by rice roots (III. Electrophysiology) Plant Physiol., 104 (1994),pp. 899-906
    [43]
    Wang, M.Y., Siddiqi, M.Y., Glass, A.D.M. Plant Cell Environ., 19 (1996),pp. 1037-1046
    [44]
    Wang, M.Y., Siddiqi, M.Y., Ruth, T.J. et al. Plant Physiol., 103 (1993),pp. 1259-1267
    [45]
    White, P.J. Improving potassium acquisition and utilisation by crop plants J. Plant Nutr. Soil Sci., 176 (2013),pp. 305-316
    [46]
    Xia, X.D., Fan, X.R., Wei, J. et al. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport J. Exp. Bot., 66 (2015),pp. 317-331
    [47]
    Xu, G.H., Fan, X.R., Miller, A.J. Plant nitrogen assimilation and use efficiency Annu. Rev. Plant Biol., 63 (2012),pp. 153-182
    [48]
    Xu, G.H., Wolf, S., Kafkafi, U. Ammonium on potassium interaction in sweet pepper J. Plant Nutr., 25 (2002),pp. 719-734
    [49]
    Yang, T.Y., Zhang, S., Hu, Y.B. et al. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels Plant Physiol., 166 (2014),pp. 945-959
    [50]
    Yao, S.G., Sonoda, Y., Tsutsui, T. et al. Breed. Sci., 58 (2008),pp. 201-207
    [51]
    Yuan, L.X., Gu, R.L., Xuan, Y.H. et al. Plant Cell, 25 (2013),pp. 974-984
    [52]
    Yuan, L., Loque, D., Kojima, S. et al. Plant Cell, 19 (2007),pp. 2636-2652
    [53]
    Yuan, L., Graff, L., Loque, D. et al. Plant Cell Physiol., 50 (2009),pp. 13-25
    [54]
    Zhu, G.B., Wang, S.Y., Wang, Y. et al. Anaerobic ammonia oxidation in a fertilized paddy soil ISME J., 5 (2011),pp. 1905-1912
    [55]
    Zhu, Y., Di, T., Xu, G. et al. Plant Cell Environ., 32 (2009),pp. 1428-1440
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return