[1] |
Akhunov, E.D., Akhunova, A.R., Anderson, O.D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes BMC Genomics, 11 (2010),p. 702
|
[2] |
Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M. et al. Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 10836-10841
|
[3] |
Akpinar, B.A., Lucas, S.J., Vrana, J. et al. Plant Biotechnol. J., 13 (2015),pp. 740-752
|
[4] |
Arumuganathan, K., Earle, E.D. Nuclear DNA content of some important plant species Plant Mol. Biol. Rep., 9 (1991),pp. 208-218
|
[5] |
Camacho, C., Coulouris, G., Avagyan, V. et al. BLAST+: architecture and applications BMC Bioinformatics, 10 (2009),p. 421
|
[6] |
Chapman, J.A., Mascher, M., Buluc, A. et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome Genome Biol., 16 (2015),p. 26
|
[7] |
Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
|
[8] |
Choulet, F., Wicker, T., Rustenholz, C. et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces Plant Cell, 22 (2010),pp. 1686-1701
|
[9] |
Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication Science, 316 (2007),pp. 1862-1866
|
[10] |
Dvorak, J., Akhunov, E.D. Genetics, 171 (2005),pp. 323-332
|
[11] |
Dvorak, J., Deal, K.R., Luo, M.C. et al. The origin of spelt and free-threshing hexaploid wheat J. Hered., 103 (2012),pp. 426-441
|
[12] |
Dvorak, J., Luo, M.C., Yang, Z.L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species Genetics, 148 (1998),pp. 423-434
|
[13] |
Dvorak, J., Mcguire, P.E., Mendlinger, S. Plant Syst. Evol., 144 (1984),pp. 209-220
|
[14] |
Dvorak, J., Terlizzi, P., Zhang, H.B. et al. The evolution of polyploid wheats: identification of the A genome donor species Genome, 36 (1993),pp. 21-31
|
[15] |
Dvorak, J., Yang, Z.L., You, F.M. et al. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates Genetics, 168 (2004),pp. 1665-1675
|
[16] |
Dvorak, J., Zhang, H.B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 9640-9644
|
[17] |
FAO
|
[18] |
Feldman, M., Levy, A.A. Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes J. Genet. Genomics, 36 (2009),pp. 511-518
|
[19] |
Glover, N.M., Daron, J., Pingault, L. et al. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B Genome Biol., 16 (2015),p. 188
|
[20] |
Gordon, D., Green, P. Consed: a graphical editor for next-generation sequencing Bioinformatics, 29 (2013),pp. 2936-2937
|
[21] |
Hastie, A.R., Dong, L., Smith, A. et al. PLoS One, 8 (2013),p. e55864
|
[22] |
Huo, N., Lazo, G.R., Vogel, J.P. et al. Funct. Integr. Genomics, 8 (2008),pp. 135-147
|
[23] |
International Brachypodium Initiative Nature, 463 (2010),pp. 763-768
|
[24] |
International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
|
[25] |
International Wheat Genome Sequencing Consortium Science, 345 (2014),p. 1251788
|
[26] |
Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
|
[27] |
Kersey, P.J., Allen, J.E., Christensen, M. et al. Ensembl Genomes 2013: scaling up access to genome-wide data Nucleic Acids Res., 42 (2014),pp. D546-D552
|
[28] |
Kihara, H. Agri. Hort., 19 (1944),pp. 13-14
|
[29] |
Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
|
[30] |
Kumar, A., Seetan, R., Mergoum, M. et al. BMC Genomics, 16 (2015),p. 800
|
[31] |
Langham, R.J., Walsh, J., Dunn, M. et al. Genomic duplication, fractionation and the origin of regulatory novelty Genetics, 166 (2004),pp. 935-945
|
[32] |
Lennon, N.J., Lintner, R.E., Anderson, S. et al. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454 Genome Biol., 11 (2010),p. R15
|
[33] |
Leroy, P., Guilhot, N., Sakai, H. et al. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes Front. Plant. Sci., 3 (2012),p. 5
|
[34] |
Li, A., Liu, D., Wu, J. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat Plant Cell, 26 (2014),pp. 1878-1900
|
[35] |
Li, H., Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform Bioinformatics, 26 (2010),pp. 589-595
|
[36] |
Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
|
[37] |
Love, A. Conspectus of the Triticeae Feddes Repert., 95 (1984),pp. 425-521
|
[38] |
Luo, M.C., Deal, K.R., Akhunov, E.D. et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 15780-15785
|
[39] |
Luo, M.C., Gu, Y.Q., You, F.M. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 7940-7945
|
[40] |
Luo, M.C., Ma, Y., You, F.M. et al. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species BMC Genomics, 11 (2010),p. 122
|
[41] |
Margulies, M., Egholm, M., Altman, W.E. et al. Genome sequencing in microfabricated high-density picolitre reactors Nature, 437 (2005),pp. 376-380
|
[42] |
Massa, A.N., Wanjugi, H., Deal, K.R. et al. Mol. Biol. Evol., 28 (2011),pp. 2537-2547
|
[43] |
Mc, F.E., Sears, E.R. J. Hered., 37 (1946),pp. 107-116
|
[44] |
McIntosh, R.A., Yamazaki, Y., Dubcovsky, J. et al.
|
[45] |
Nesbitt, M., Samuels, D.C.
|
[46] |
Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
|
[47] |
Ohno, S.
|
[48] |
Oleszczuk, S., Lukaszewski, A.J. The origin of unusual chromosome constitutions among newly formed allopolyploids Am. J. Bot., 101 (2014),pp. 318-326
|
[49] |
Paterson, A.H., Bowers, J.E., Bruggmann, R. et al. Nature, 457 (2009),pp. 551-556
|
[50] |
Rees, H., Walters, M.R. Nuclear DNA and evolution of wheat Heredity, 20 (1965),pp. 73-82
|
[51] |
Safar, J., Simkova, H., Kubalakova, M. et al. Development of chromosome-specific BAC resources for genomics of bread wheat Cytogenet. Genome Res., 129 (2010),pp. 211-223
|
[52] |
Smit, A., Hubley, R., Green, P.
|
[53] |
Stankova, H., Hastie, A.R., Chan, S. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes Plant Biotechnol. J., 14 (2016),pp. 1523-1531
|
[54] |
Tang, H., Zhang, X., Miao, C. et al. ALLMAPS: robust scaffold ordering based on multiple maps Genome Biol., 16 (2015),p. 3
|
[55] |
Wang, J., Luo, M.C., Chen, Z. et al. New Phytol., 198 (2013),pp. 925-937
|
[56] |
Wang, S., Wong, D., Forrest, K. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array Plant Biotechnol. J., 12 (2014),pp. 787-796
|
[57] |
Wang, Y., Tang, H., Debarry, J.D. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity Nucleic Acids Res., 40 (2012),p. e49
|
[58] |
Warburton, M.L., Crossa, J., Franco, J. et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm Euphytica, 149 (2006),pp. 289-301
|
[59] |
Wu, T.D., Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads Bioinformatics, 26 (2010),pp. 873-881
|
[60] |
Zhang, C., Wang, J., Long, M. et al. gKaKs: the pipeline for genome-level Ka/Ks calculation Bioinformatics, 29 (2013),pp. 645-646
|
[61] |
Zhang, H., Bian, Y., Gou, X. et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19466-19471
|
[62] |
Zhang, H., Dawe, R.K. Total centromere size and genome size are strongly correlated in ten grass species Chromosome Res., 20 (2012),pp. 403-412
|
[63] |
Zhang, J., Kudrna, D., Mu, T. et al. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences Bioinformatics, 32 (2016),pp. 3058-3064
|
[64] |
Zhang, T., Hu, Y., Jiang, W. et al. Nat. Biotechnol., 33 (2015),pp. 531-537
|
[65] |
Zhao, N., Zhu, B., Li, M. et al. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat Genetics, 188 (2011),pp. 499-510
|