5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes

doi: 10.1016/j.jgg.2016.09.005
More Information
  • Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from two rounds of interspecific hybridizations. A high-quality genome sequence assembly of diploid Aegilops tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combined approach of BAC pooling and next-generation sequencing technology was employed to sequence the minimum tiling path (MTP) of 3176 BAC clones from the short arm of Ae. tauschii chromosome 3 (At3DS). The final assembly of 135 super-scaffolds with an N50 of 4.2 Mb was used to build a 247-Mb pseudomolecule with a total of 2222 predicted protein-coding genes. Compared with the orthologous regions of rice, Brachypodium, and sorghum, At3DS contains 38.67% more genes. In comparison to At3DS, the short arm sequence of wheat chromosome 3B (Ta3BS) is 95-Mb large in size, which is primarily due to the expansion of the non-centromeric region, suggesting that transposable element (TE) bursts in Ta3B likely occurred there. Also, the size increase is accompanied by a proportional increase in gene number in Ta3BS. We found that in the sequence of short arm of wheat chromosome 3D (Ta3DS), there was only less than 0.27% gene loss compared to At3DS. Our study reveals divergent evolution of grass genomes and provides new insights into sequence changes in the polyploid wheat genome.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Akhunov, E.D., Akhunova, A.R., Anderson, O.D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes BMC Genomics, 11 (2010),p. 702
    [2]
    Akhunov, E.D., Akhunova, A.R., Linkiewicz, A.M. et al. Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 10836-10841
    [3]
    Akpinar, B.A., Lucas, S.J., Vrana, J. et al. Plant Biotechnol. J., 13 (2015),pp. 740-752
    [4]
    Arumuganathan, K., Earle, E.D. Nuclear DNA content of some important plant species Plant Mol. Biol. Rep., 9 (1991),pp. 208-218
    [5]
    Camacho, C., Coulouris, G., Avagyan, V. et al. BLAST+: architecture and applications BMC Bioinformatics, 10 (2009),p. 421
    [6]
    Chapman, J.A., Mascher, M., Buluc, A. et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome Genome Biol., 16 (2015),p. 26
    [7]
    Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
    [8]
    Choulet, F., Wicker, T., Rustenholz, C. et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces Plant Cell, 22 (2010),pp. 1686-1701
    [9]
    Dubcovsky, J., Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication Science, 316 (2007),pp. 1862-1866
    [10]
    Dvorak, J., Akhunov, E.D. Genetics, 171 (2005),pp. 323-332
    [11]
    Dvorak, J., Deal, K.R., Luo, M.C. et al. The origin of spelt and free-threshing hexaploid wheat J. Hered., 103 (2012),pp. 426-441
    [12]
    Dvorak, J., Luo, M.C., Yang, Z.L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species Genetics, 148 (1998),pp. 423-434
    [13]
    Dvorak, J., Mcguire, P.E., Mendlinger, S. Plant Syst. Evol., 144 (1984),pp. 209-220
    [14]
    Dvorak, J., Terlizzi, P., Zhang, H.B. et al. The evolution of polyploid wheats: identification of the A genome donor species Genome, 36 (1993),pp. 21-31
    [15]
    Dvorak, J., Yang, Z.L., You, F.M. et al. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates Genetics, 168 (2004),pp. 1665-1675
    [16]
    Dvorak, J., Zhang, H.B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes Proc. Natl. Acad. Sci. U. S. A., 87 (1990),pp. 9640-9644
    [17]
    FAO
    [18]
    Feldman, M., Levy, A.A. Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes J. Genet. Genomics, 36 (2009),pp. 511-518
    [19]
    Glover, N.M., Daron, J., Pingault, L. et al. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B Genome Biol., 16 (2015),p. 188
    [20]
    Gordon, D., Green, P. Consed: a graphical editor for next-generation sequencing Bioinformatics, 29 (2013),pp. 2936-2937
    [21]
    Hastie, A.R., Dong, L., Smith, A. et al. PLoS One, 8 (2013),p. e55864
    [22]
    Huo, N., Lazo, G.R., Vogel, J.P. et al. Funct. Integr. Genomics, 8 (2008),pp. 135-147
    [23]
    International Brachypodium Initiative Nature, 463 (2010),pp. 763-768
    [24]
    International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [25]
    International Wheat Genome Sequencing Consortium Science, 345 (2014),p. 1251788
    [26]
    Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
    [27]
    Kersey, P.J., Allen, J.E., Christensen, M. et al. Ensembl Genomes 2013: scaling up access to genome-wide data Nucleic Acids Res., 42 (2014),pp. D546-D552
    [28]
    Kihara, H. Agri. Hort., 19 (1944),pp. 13-14
    [29]
    Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
    [30]
    Kumar, A., Seetan, R., Mergoum, M. et al. BMC Genomics, 16 (2015),p. 800
    [31]
    Langham, R.J., Walsh, J., Dunn, M. et al. Genomic duplication, fractionation and the origin of regulatory novelty Genetics, 166 (2004),pp. 935-945
    [32]
    Lennon, N.J., Lintner, R.E., Anderson, S. et al. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454 Genome Biol., 11 (2010),p. R15
    [33]
    Leroy, P., Guilhot, N., Sakai, H. et al. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes Front. Plant. Sci., 3 (2012),p. 5
    [34]
    Li, A., Liu, D., Wu, J. et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat Plant Cell, 26 (2014),pp. 1878-1900
    [35]
    Li, H., Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform Bioinformatics, 26 (2010),pp. 589-595
    [36]
    Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [37]
    Love, A. Conspectus of the Triticeae Feddes Repert., 95 (1984),pp. 425-521
    [38]
    Luo, M.C., Deal, K.R., Akhunov, E.D. et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 15780-15785
    [39]
    Luo, M.C., Gu, Y.Q., You, F.M. et al. Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 7940-7945
    [40]
    Luo, M.C., Ma, Y., You, F.M. et al. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species BMC Genomics, 11 (2010),p. 122
    [41]
    Margulies, M., Egholm, M., Altman, W.E. et al. Genome sequencing in microfabricated high-density picolitre reactors Nature, 437 (2005),pp. 376-380
    [42]
    Massa, A.N., Wanjugi, H., Deal, K.R. et al. Mol. Biol. Evol., 28 (2011),pp. 2537-2547
    [43]
    Mc, F.E., Sears, E.R. J. Hered., 37 (1946),pp. 107-116
    [44]
    McIntosh, R.A., Yamazaki, Y., Dubcovsky, J. et al.
    [45]
    Nesbitt, M., Samuels, D.C.
    [46]
    Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
    [47]
    Ohno, S.
    [48]
    Oleszczuk, S., Lukaszewski, A.J. The origin of unusual chromosome constitutions among newly formed allopolyploids Am. J. Bot., 101 (2014),pp. 318-326
    [49]
    Paterson, A.H., Bowers, J.E., Bruggmann, R. et al. Nature, 457 (2009),pp. 551-556
    [50]
    Rees, H., Walters, M.R. Nuclear DNA and evolution of wheat Heredity, 20 (1965),pp. 73-82
    [51]
    Safar, J., Simkova, H., Kubalakova, M. et al. Development of chromosome-specific BAC resources for genomics of bread wheat Cytogenet. Genome Res., 129 (2010),pp. 211-223
    [52]
    Smit, A., Hubley, R., Green, P.
    [53]
    Stankova, H., Hastie, A.R., Chan, S. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes Plant Biotechnol. J., 14 (2016),pp. 1523-1531
    [54]
    Tang, H., Zhang, X., Miao, C. et al. ALLMAPS: robust scaffold ordering based on multiple maps Genome Biol., 16 (2015),p. 3
    [55]
    Wang, J., Luo, M.C., Chen, Z. et al. New Phytol., 198 (2013),pp. 925-937
    [56]
    Wang, S., Wong, D., Forrest, K. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array Plant Biotechnol. J., 12 (2014),pp. 787-796
    [57]
    Wang, Y., Tang, H., Debarry, J.D. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity Nucleic Acids Res., 40 (2012),p. e49
    [58]
    Warburton, M.L., Crossa, J., Franco, J. et al. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm Euphytica, 149 (2006),pp. 289-301
    [59]
    Wu, T.D., Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads Bioinformatics, 26 (2010),pp. 873-881
    [60]
    Zhang, C., Wang, J., Long, M. et al. gKaKs: the pipeline for genome-level Ka/Ks calculation Bioinformatics, 29 (2013),pp. 645-646
    [61]
    Zhang, H., Bian, Y., Gou, X. et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. 19466-19471
    [62]
    Zhang, H., Dawe, R.K. Total centromere size and genome size are strongly correlated in ten grass species Chromosome Res., 20 (2012),pp. 403-412
    [63]
    Zhang, J., Kudrna, D., Mu, T. et al. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences Bioinformatics, 32 (2016),pp. 3058-3064
    [64]
    Zhang, T., Hu, Y., Jiang, W. et al. Nat. Biotechnol., 33 (2015),pp. 531-537
    [65]
    Zhao, N., Zhu, B., Li, M. et al. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat Genetics, 188 (2011),pp. 499-510
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return