5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 10
Oct.  2016
Turn off MathJax
Article Contents

Identification of a TSPY co-expression network associated with DNA hypomethylation and tumor gene expression in somatic cancers

doi: 10.1016/j.jgg.2016.09.003
More Information
  • Corresponding author: E-mail address: Chris.Lau@UCSF.edu (Yun-Fai Chris Lau)
  • Received Date: 2016-06-07
  • Accepted Date: 2016-09-05
  • Rev Recd Date: 2016-07-27
  • Available Online: 2016-09-17
  • Publish Date: 2016-10-20
  • Testis specific protein Y-encoded (TSPY) is a Y-located proto-oncogene predominantly expressed in normal male germ cells and various types of germ cell tumor. Significantly, TSPY is frequently expressed in somatic cancers including liver cancer but not in adjacent normal tissues, suggesting that ectopic TSPY expression could be associated with oncogenesis in non-germ cell cancers. Various studies demonstrated that TSPY expression promotes growth and proliferation in cancer cells; however, its relationship to other oncogenic events in TSPY-positive cancers remains unknown. The present study seeks to correlate TSPY expression with other molecular features in clinical cancer samples, by analyses of RNA-seq transcriptome and DNA methylation data in the Cancer Genome Atlas (TCGA) database. A total of 53 genes, including oncogenic lineage protein 28 homolog B (LIN28B) gene and RNA-binding motif protein Y-linked (RBMY) gene, are identified to be consistently co-expressed with TSPY, and have been collectively designated as the TSPY co-expression network (TCN). TCN genes were simultaneously activated in subsets of liver hepatocellular carcinoma (30%) and lung adenocarcinoma (10%) regardless of pathological stage, but only minimally in other cancer types. Further analysis revealed that the DNA methylation level was globally lower in the TCN-active than TCN-silent cancers. The specific expression and methylation patterns of TCN genes suggest that they could be useful as biomarkers for the diagnosis, prognosis and clinical management of cancers, especially those for liver and lung cancers, associated with TSPY co-expression network genes.
  • loading
  • [1]
    Aoki, Y., Nojima, M., Suzuki, H. et al. Genomic vulnerability to LINE-1 hypomethylation is a potential determinant of the clinicogenetic features of multiple myeloma Genome Med., 4 (2012),p. 101
    [2]
    Benjamini, Y., Hochnerg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing J. Roy. Stat. Soc. Ser. B Methodol., 57 (1995),pp. 289-300
    [3]
    Carter, S.L., Eklund, A.C., Kohane, I.S. et al. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers Nat. Genet., 38 (2006),pp. 1043-1048
    [4]
    Collins, F.S., Varmus, H. A new initiative on precision medicine N. Engl. J. Med., 372 (2015),pp. 793-795
    [5]
    Compton, C.C., Byrd, D.R., Garcia-Aguilar, J. et al.
    [6]
    Coral, S., Parisi, G., Nicolay, H.J. et al. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide Cancer Immunol. Immunother., 62 (2013),pp. 605-614
    [7]
    Costello, J.C., Heiser, L.M., Georgii, E. et al. A community effort to assess and improve drug sensitivity prediction algorithms Nat. Biotechnol., 32 (2014),pp. 1202-1212
    [8]
    Daskalos, A., Nikolaidis, G., Xinarianos, G. et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer Int. J. Cancer, 124 (2009),pp. 81-87
    [9]
    Dyrskjot, L., Zieger, K., Kissow Lildal, T. et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma Br. J. Cancer, 107 (2012),pp. 116-122
    [10]
    Fratta, E., Coral, S., Covre, A. et al. The biology of cancer testis antigens: putative function, regulation and therapeutic potential Mol. Oncol., 5 (2011),pp. 164-182
    [11]
    Gaiteri, C., Ding, Y., French, B. et al. Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders Genes Brain Behav., 13 (2014),pp. 13-24
    [12]
    Gallagher, W.M., Bergin, O.E., Rafferty, M. et al. Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies Carcinogenesis, 26 (2005),pp. 1856-1867
    [13]
    Geeleher, P., Cox, N.J., Huang, R.S. Genome Biol., 15 (2014),p. R47
    [14]
    Gonda, D.D., Cheung, V.J., Muller, K.A. et al. The Cancer Genome Atlas expression profiles of low-grade gliomas Neurosurg. Focus, 36 (2014),p. E23
    [15]
    Guan, Y., Chen, L., Bao, Y. et al. Int. J. Clin. Exp. Pathol., 8 (2015),pp. 6576-6588
    [16]
    Gure, A.O., Wei, I.J., Old, L.J. et al. The SSX gene family: characterization of 9 complete genes Int. J. Cancer, 101 (2002),pp. 448-453
    [17]
    Hirohashi, Y., Torigoe, T., Tsukahara, T. et al. Immune responses to human cancer stem-like cells/cancer-initiating cells Cancer Sci., 107 (2016),pp. 12-17
    [18]
    Hoadley, K.A., Yau, C., Wolf, D.M. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin Cell, 158 (2014),pp. 929-944
    [19]
    Honecker, F., Stoop, H., de Krijger, R.R. et al. Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells J. Pathol., 203 (2004),pp. 849-857
    [20]
    Horvath, S., Dong, J. Geometric interpretation of gene coexpression network analysis PLoS Comput. Biol., 4 (2008),p. e1000117
    [21]
    Kersemaekers, A.M., Honecker, F., Stoop, H. et al. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY Hum. Pathol., 36 (2005),pp. 512-521
    [22]
    Kido, T., Hatakeyama, S., Ohyama, C. et al. Expression of the Y-encoded TSPY is associated with progression of prostate cancer Genes, 1 (2010),pp. 283-293
    [23]
    Kido, T., Lau, Y.F. The human Y-encoded testis-specific protein interacts functionally with eukaryotic translation elongation factor eEF1A, a putative oncoprotein Int. J. Cancer, 123 (2008),pp. 1573-1585
    [24]
    Kido, T., Lau, Y.F. Roles of the Y chromosome genes in human cancers Asian J. Androl., 17 (2015),pp. 373-380
    [25]
    Kido, T., Lo, R.C., Li, Y. et al. The potential contributions of a Y-located protooncogene and its X homologue in sexual dimorphisms in hepatocellular carcinoma Hum. Pathol., 45 (2014),pp. 1847-1858
    [26]
    Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis BMC Bioinformatics, 9 (2008),p. 559
    [27]
    Lau, Y., Chou, P., Iezzoni, J. et al. Expression of a candidate gene for the gonadoblastoma locus in gonadoblastoma and testicular seminoma Cytogenet. Cell Genet., 91 (2000),pp. 160-164
    [28]
    Lau, Y.F. Am. J. Hum. Genet., 64 (1999),pp. 921-927
    [29]
    Lau, Y.F., Lau, H.W., Komuves, L.G. Expression pattern of a gonadoblastoma candidate gene suggests a role of the Y chromosome in prostate cancer Cytogenet. Genome Res., 101 (2003),pp. 250-260
    [30]
    Lau, Y.F., Li, Y., Kido, T. Birth Defects Res. C Embryol. Today, 87 (2009),pp. 114-122
    [31]
    Lau, Y.F., Li, Y., Kido, T. Role of the Y-located putative gonadoblastoma gene in human spermatogenesis Syst. Biol. Reprod. Med., 57 (2011),pp. 27-34
    [32]
    Li, Y., Lau, Y.F. TSPY and its X-encoded homologue interact with cyclin B but exert contrasting functions on cyclin-dependent kinase 1 activities Oncogene, 27 (2008),pp. 6141-6150
    [33]
    Li, Y., Tabatabai, Z.L., Lee, T.L. et al. The Y-encoded TSPY protein: a significant marker potentially plays a role in the pathogenesis of testicular germ cell tumors Hum. Pathol., 38 (2007),pp. 1470-1481
    [34]
    Li, Y., Vilain, E., Conte, F. et al. Urol. Oncol., 25 (2007),pp. 141-146
    [35]
    Liu, W., Zhao, Z.Y., Shi, L. et al. Tissue microRNA-126 expression level predicts outcome in human osteosarcoma Diagn. Pathol., 10 (2015),p. 116
    [36]
    Liu, Y., Li, Y.H., Guo, F.J. et al. Gamma-aminobutyric acid promotes human hepatocellular carcinoma growth through overexpressed gamma-aminobutyric acid A receptor alpha 3 subunit World J. Gastroenterol., 14 (2008),pp. 7175-7182
    [37]
    Monte, M., Simonatto, M., Peche, L.Y. et al. MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 11160-11165
    [38]
    Nishida, N., Arizumi, T., Hayaishi, S. et al. Gender differences in the livers of patients with hepatocellular carcinoma and chronic hepatitis C infection Dig. Dis., 30 (2012),pp. 547-553
    [39]
    Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M. et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta Hum. Mol. Genet., 19 (2010),pp. 3566-3582
    [40]
    Oram, S.W., Liu, X.X., Lee, T.L. et al. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells BMC Cancer, 6 (2006),p. 154
    [41]
    Ozbun, L.L., You, L., Kiang, S. et al. Identification of differentially expressed nucleolar TGF-beta1 target (DENTT) in human lung cancer cells that is a new member of the TSPY/SET/NAP-1 superfamily Genomics, 73 (2001),pp. 179-193
    [42]
    Page, D.C. Hypothesis: a Y-chromosomal gene causes gonadoblastoma in dysgenetic gonads Development, 101 (1987),pp. 151-155
    [43]
    Perou, C.M., Borresen-Dale, A.L. Systems biology and genomics of breast cancer Cold Spring Harb. Perspect. Biol., 3 (2011),p. a003293
    [44]
    Saeed, A.I., Bhagabati, N.K., Braisted, J.C. et al. TM4 microarray software suite Methods Enzymol., 411 (2006),pp. 134-193
    [45]
    Salo, P., Kaariainen, H., Petrovic, V. et al. Molecular mapping of the putative gonadoblastoma locus on the Y chromosome Genes Chromosom. Cancer, 14 (1995),pp. 210-214
    [46]
    Santos, C., Sanz-Pamplona, R., Nadal, E. et al. Intrinsic cancer subtypes–next steps into personalized medicine Cell Oncol., 38 (2015),pp. 3-16
    [47]
    Schnieders, F., Dork, T., Arnemann, J. et al. Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues Hum. Mol. Genet., 5 (1996),pp. 1801-1807
    [48]
    Simpson, A.J., Caballero, O.L., Jungbluth, A. et al. Cancer/testis antigens, gametogenesis and cancer Nat. Rev. Cancer, 5 (2005),pp. 615-625
    [49]
    Spilka, R., Ernst, C., Mehta, A.K. et al. Eukaryotic translation initiation factors in cancer development and progression Cancer Lett., 340 (2013),pp. 9-21
    [50]
    Stuart, J.M., Segal, E., Koller, D. et al. A gene-coexpression network for global discovery of conserved genetic modules Science, 302 (2003),pp. 249-255
    [51]
    Sun, J., Nishiyama, T., Shimizu, K. et al. TCC: an R package for comparing tag count data with robust normalization strategies BMC Bioinformatics, 14 (2013),p. 219
    [52]
    Taguchi, A., Taylor, A.D., Rodriguez, J. et al. Cancer Res., 74 (2014),pp. 4694-4705
    [53]
    Tomczak, K., Czerwinska, P., Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge Contemp. Oncol. Pozn., 19 (2015),pp. A68-A77
    [54]
    Tsuchiya, K., Reijo, R., Page, D.C. et al. Gonadoblastoma: molecular definition of the susceptibility region on the Y chromosome Am. J. Hum. Genet., 57 (1995),pp. 1400-1407
    [55]
    Tsuei, D.J., Lee, P.H., Peng, H.Y. et al. Male germ cell-specific RNA binding protein RBMY: a new oncogene explaining male predominance in liver cancer PLoS One, 6 (2011),p. e26948
    [56]
    Wang, W., Nag, S., Zhang, X. et al. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications Med. Res. Rev., 35 (2015),pp. 225-285
    [57]
    Watanabe, T., Kobunai, T., Yamamoto, Y. et al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer J. Clin. Oncol., 30 (2012),pp. 2256-2264
    [58]
    Weisenberger, D.J. Characterizing DNA methylation alterations from the Cancer genome atlas J. Clin. Investig., 124 (2014),pp. 17-23
    [59]
    Whitehurst, A.W. Cause and consequence of cancer/testis antigen activation in cancer Annu. Rev. Pharmacol. Toxicol., 54 (2014),pp. 251-272
    [60]
    Wong, H.K., Fatimy, R.E., Onodera, C. et al. The cancer genome atlas analysis predicts microRNA for targeting cancer growth and vascularization in glioblastoma Mol. Ther., 23 (2015),pp. 1234-1247
    [61]
    Wu, D., Pang, Y., Wilkerson, M.D. et al. Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity Br. J. Cancer, 109 (2013),pp. 1599-1608
    [62]
    Wu, G., Stein, L. A network module-based method for identifying cancer prognostic signatures Genome Biol., 13 (2012),p. R112
    [63]
    Yeh, S.H., Chen, P.J. Gender disparity of hepatocellular carcinoma: the roles of sex hormones Oncology, 78 (2010),pp. 172-179
    [64]
    Yin, Y.H., Li, Y.Y., Qiao, H. et al. TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma Br. J. Cancer, 93 (2005),pp. 458-463
    [65]
    Zha, R., Guo, W., Zhang, Z. et al. Genome-wide screening identified that miR-134 acts as a metastasis suppressor by targeting integrin beta1 in hepatocellular carcinoma PLoS One, 9 (2014),p. e87665
    [66]
    Zhang, J.S., Yang-Feng, T.L., Muller, U. et al. Molecular isolation and characterization of an expressed gene from the human Y chromosome Hum. Mol. Genet., 1 (1992),pp. 717-726
    [67]
    Zhou, J., Ng, S.B., Chng, W.J. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells Int. J. Biochem. Cell Biol., 45 (2013),pp. 973-978
    [68]
    Zhou, W., Fong, M.Y., Min, Y. et al. Cancer Cell, 25 (2014),pp. 501-515
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return