5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 10
Oct.  2016
Turn off MathJax
Article Contents

OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development

doi: 10.1016/j.jgg.2016.09.002
More Information
  • Corresponding author: E-mail address: wangdk@mail.zaas.ac.cn (Dekai Wang)
  • Received Date: 2016-01-12
  • Accepted Date: 2016-09-13
  • Rev Recd Date: 2016-08-24
  • Available Online: 2016-09-15
  • Publish Date: 2016-10-20
  • Functional chloroplast generation depends on the precise coordination of gene expression between the plastid and the nucleus and is essential for plant growth and development. In this study, a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes was isolated from a60Co-irradiated rice population. The mutant gene was identified as an ortholog of the Arabidopsis plastid transcriptionally active chromosome protein 2 (pTAC2) gene, and the mutant strain was designated osptac2. Sequence and transcription analyses showed that OspTAC2 encodes a putative chloroplast protein consisting of 10 pentratricopeptide repeat (PPR) domains and a C-terminal small MutS-related (SMR) domain. Cytological observations via microscopy showed that the OspTAC2-green fluorescent fusion protein is localized in the chloroplasts. Transmission electron microscopy revealed that the chloroplast of the osptac2 mutant lacks an organized thylakoid membrane. The transcript levels of all investigated PEP (plastid-encoded RNA polymerase)-dependent genes were dramatically reduced in the osptac2 mutant, whereas the transcript levels of NEP (nuclear-encoded polymerase)-dependent genes were increased. These results suggest that OspTAC2 plays a critical role in chloroplast development and indicate that the molecular function of the OspTAC2 gene is conserved in rice and Arabidopsis.
  • loading
  • [1]
    Akagi, H., Nakamura, A., Yokozeki-Misono, Y. et al. Theor. Appl. Genet., 108 (2004),pp. 1449-1457
    [2]
    Aubourg, S., Boudet, N., Kreis, M. et al. Plant Mol. Biol., 42 (2000),pp. 603-613
    [3]
    Barkan, A., Small, I. Pentatricopeptide repeat proteins in plants Annu. Rev. Plant Biol., 65 (2014),pp. 415-442
    [4]
    Courtois, F., Merendino, L., Demarsy, E. et al. Plant Physiol., 145 (2007),pp. 712-721
    [5]
    Chen, M., Galvão, R.M., Li, M. et al. Cell, 141 (2010),pp. 1230-1240
    [6]
    Ding, Y., Liu, N., Tang, Z. et al. Plant Cell, 18 (2006),pp. 815-830
    [7]
    Emanuelsson, O., Nielsen, H., Brunak, S. et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence J. Mol. Biol., 300 (2000),pp. 1005-1016
    [8]
    Emanuelsson, O., Nielsen, H., von Heijne, G. ChloroP, a neural networkbased method for predicting chloroplast transit peptides and their cleavage sites Protein Sci., 8 (1999),pp. 978-984
    [9]
    Gao, Z., Yu, Q., Zhao, T. et al. Plant Physiol., 157 (2011),pp. 1733-1745
    [10]
    Gong, X., Su, Q., Lin, D. et al. J. Integr. Plant Biol., 56 (2014),pp. 400-410
    [11]
    Gothandam, K., Kim, E., Cho, H. et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis Plant Mol. Biol., 58 (2005),pp. 421-433
    [12]
    Gutierrez-Nava, M., Gillmor, C., Jimenez, L. et al. Plant Physiol., 135 (2004),pp. 471-482
    [13]
    Hiei, Y., Ohta, S., Komari, T. et al. Plant J., 6 (1994),pp. 271-282
    [14]
    Hricova, A., Quesada, V., Micol, J. Plant Physiol., 141 (2006),pp. 942-956
    [15]
    Jefferson, R. The GUS reporter gene system Nature, 342 (1989),pp. 837-838
    [16]
    Jeon, Y., Jung, H.J., Kang, H. et al. New Phytol., 193 (2012),pp. 349-363
    [17]
    Kim, S., Yang, J., Moon, S. et al. Plant J., 59 (2009),pp. 738-749
    [18]
    Koussevitzky, S., Nott, A., Mockler, T. et al. Signals from chloroplasts converge to regulate nuclear gene expression Science, 316 (2007),pp. 715-719
    [19]
    Kwon, K., Cho, M. Plant J., 55 (2008),pp. 428-442
    [20]
    Li, X., Zhang, Y., Hou, M. et al. Plant J., 79 (2014),pp. 797-809
    [21]
    Liu, S., Melonek, J., Boykin, L. et al. PPR-SMRs: ancient proteins with enigmatic functions RNA Biol., 10 (2013),pp. 1501-1510
    [22]
    Lurin, C., Andrés, C., Aubourg, S. et al. Plant Cell, 16 (2004),pp. 2089-2103
    [23]
    Mandel, M., Feldmann, K., Herrera-Estrella, L. et al. Plant J., 9 (1996),pp. 649-658
    [24]
    Marechal, A., Parent, J.S., Véronneau-Lafortune, F. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 14693-14698
    [25]
    McCouch, S., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [26]
    Meinke, D., Muralla, R., Sweeney, C. et al. Trends Plant Sci., 13 (2008),pp. 483-491
    [27]
    Motohashi, R., Nagata, N., Ito, T. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 10499-10504
    [28]
    O'Toole, N., Hattori, M., Andres, C. et al. On the expansion of the pentatricopeptide repeat gene family in plants Mol. Biol. Evol., 25 (2008),pp. 1120-1128
    [29]
    Pfalz, J., Liere, K., Kandlbinder, A. et al. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression Plant Cell, 18 (2006),pp. 176-197
    [30]
    Pyke, K. Plastid biogenesis and differentiation Curr. Genet., 19 (2007),pp. 1-28
    [31]
    Small, I., Peeters, N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins Trends biochem. Sci., 25 (2000),pp. 46-47
    [32]
    Steiner, S., Schröter, Y., Pfalz, J. et al. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development Plant Physiol., 157 (2011),pp. 1043-1055
    [33]
    Su, N., Hu, M., Wu, D. et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production Plant Physiol., 159 (2012),pp. 227-238
    [34]
    Swiatecka-Hagenbruch, M., Emanuel, C., Hedtke, B. et al. Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase Nucleic Acids Res., 36 (2008),pp. 785-792
    [35]
    Tan, J., Tan, Z., Wu, F. et al. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice Mol. Plant, 7 (2014),pp. 1329-1349
    [36]
    Tang, H., Luo, D., Zhou, D. et al. Mol. Plant, 7 (2014),pp. 1497-1500
    [37]
    Toda, T., Fujii, S., Noguchi, K. et al. Plant J., 72 (2012),pp. 450-460
    [38]
    Wang, Z., Zou, Y., Li, X. et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing Plant Cell, 18 (2006),pp. 676-687
    [39]
    Waters, M., Langdale, J. The making of a chloroplast EMBO J., 28 (2009),pp. 2861-2873
    [40]
    Yagi, Y., Ishizaki, Y., Nakahira, Y. et al. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 7541-7546
    [41]
    Yu, Q., Lu, Y., Ma, Q. et al. Physiol. Plant, 148 (2013),pp. 408-421
    [42]
    Zoschke, R., Qu, Y., Zubo, Y. et al. J. Plant Res., 126 (2013),pp. 403-414
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads (5) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return