[1] |
Akagi, H., Nakamura, A., Yokozeki-Misono, Y. et al. Theor. Appl. Genet., 108 (2004),pp. 1449-1457
|
[2] |
Aubourg, S., Boudet, N., Kreis, M. et al. Plant Mol. Biol., 42 (2000),pp. 603-613
|
[3] |
Barkan, A., Small, I. Pentatricopeptide repeat proteins in plants Annu. Rev. Plant Biol., 65 (2014),pp. 415-442
|
[4] |
Courtois, F., Merendino, L., Demarsy, E. et al. Plant Physiol., 145 (2007),pp. 712-721
|
[5] |
Chen, M., Galvão, R.M., Li, M. et al. Cell, 141 (2010),pp. 1230-1240
|
[6] |
Ding, Y., Liu, N., Tang, Z. et al. Plant Cell, 18 (2006),pp. 815-830
|
[7] |
Emanuelsson, O., Nielsen, H., Brunak, S. et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence J. Mol. Biol., 300 (2000),pp. 1005-1016
|
[8] |
Emanuelsson, O., Nielsen, H., von Heijne, G. ChloroP, a neural networkbased method for predicting chloroplast transit peptides and their cleavage sites Protein Sci., 8 (1999),pp. 978-984
|
[9] |
Gao, Z., Yu, Q., Zhao, T. et al. Plant Physiol., 157 (2011),pp. 1733-1745
|
[10] |
Gong, X., Su, Q., Lin, D. et al. J. Integr. Plant Biol., 56 (2014),pp. 400-410
|
[11] |
Gothandam, K., Kim, E., Cho, H. et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis Plant Mol. Biol., 58 (2005),pp. 421-433
|
[12] |
Gutierrez-Nava, M., Gillmor, C., Jimenez, L. et al. Plant Physiol., 135 (2004),pp. 471-482
|
[13] |
Hiei, Y., Ohta, S., Komari, T. et al. Plant J., 6 (1994),pp. 271-282
|
[14] |
Hricova, A., Quesada, V., Micol, J. Plant Physiol., 141 (2006),pp. 942-956
|
[15] |
Jefferson, R. The GUS reporter gene system Nature, 342 (1989),pp. 837-838
|
[16] |
Jeon, Y., Jung, H.J., Kang, H. et al. New Phytol., 193 (2012),pp. 349-363
|
[17] |
Kim, S., Yang, J., Moon, S. et al. Plant J., 59 (2009),pp. 738-749
|
[18] |
Koussevitzky, S., Nott, A., Mockler, T. et al. Signals from chloroplasts converge to regulate nuclear gene expression Science, 316 (2007),pp. 715-719
|
[19] |
Kwon, K., Cho, M. Plant J., 55 (2008),pp. 428-442
|
[20] |
Li, X., Zhang, Y., Hou, M. et al. Plant J., 79 (2014),pp. 797-809
|
[21] |
Liu, S., Melonek, J., Boykin, L. et al. PPR-SMRs: ancient proteins with enigmatic functions RNA Biol., 10 (2013),pp. 1501-1510
|
[22] |
Lurin, C., Andrés, C., Aubourg, S. et al. Plant Cell, 16 (2004),pp. 2089-2103
|
[23] |
Mandel, M., Feldmann, K., Herrera-Estrella, L. et al. Plant J., 9 (1996),pp. 649-658
|
[24] |
Marechal, A., Parent, J.S., Véronneau-Lafortune, F. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 14693-14698
|
[25] |
McCouch, S., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
|
[26] |
Meinke, D., Muralla, R., Sweeney, C. et al. Trends Plant Sci., 13 (2008),pp. 483-491
|
[27] |
Motohashi, R., Nagata, N., Ito, T. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 10499-10504
|
[28] |
O'Toole, N., Hattori, M., Andres, C. et al. On the expansion of the pentatricopeptide repeat gene family in plants Mol. Biol. Evol., 25 (2008),pp. 1120-1128
|
[29] |
Pfalz, J., Liere, K., Kandlbinder, A. et al. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression Plant Cell, 18 (2006),pp. 176-197
|
[30] |
Pyke, K. Plastid biogenesis and differentiation Curr. Genet., 19 (2007),pp. 1-28
|
[31] |
Small, I., Peeters, N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins Trends biochem. Sci., 25 (2000),pp. 46-47
|
[32] |
Steiner, S., Schröter, Y., Pfalz, J. et al. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development Plant Physiol., 157 (2011),pp. 1043-1055
|
[33] |
Su, N., Hu, M., Wu, D. et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production Plant Physiol., 159 (2012),pp. 227-238
|
[34] |
Swiatecka-Hagenbruch, M., Emanuel, C., Hedtke, B. et al. Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase Nucleic Acids Res., 36 (2008),pp. 785-792
|
[35] |
Tan, J., Tan, Z., Wu, F. et al. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice Mol. Plant, 7 (2014),pp. 1329-1349
|
[36] |
Tang, H., Luo, D., Zhou, D. et al. Mol. Plant, 7 (2014),pp. 1497-1500
|
[37] |
Toda, T., Fujii, S., Noguchi, K. et al. Plant J., 72 (2012),pp. 450-460
|
[38] |
Wang, Z., Zou, Y., Li, X. et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing Plant Cell, 18 (2006),pp. 676-687
|
[39] |
Waters, M., Langdale, J. The making of a chloroplast EMBO J., 28 (2009),pp. 2861-2873
|
[40] |
Yagi, Y., Ishizaki, Y., Nakahira, Y. et al. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 7541-7546
|
[41] |
Yu, Q., Lu, Y., Ma, Q. et al. Physiol. Plant, 148 (2013),pp. 408-421
|
[42] |
Zoschke, R., Qu, Y., Zubo, Y. et al. J. Plant Res., 126 (2013),pp. 403-414
|