5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 10
Oct.  2016
Turn off MathJax
Article Contents

Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish

doi: 10.1016/j.jgg.2016.09.001
More Information
  • Corresponding author: E-mail address: zilong@ust.hk (Zilong Wen); E-mail address: nfyyliaowangjun@163.com (Wangjun Liao); E-mail address: zzwwqq@smu.edu.cn (Wenqing Zhang)
  • Received Date: 2016-04-22
  • Accepted Date: 2016-09-01
  • Rev Recd Date: 2016-08-29
  • Available Online: 2016-09-03
  • Publish Date: 2016-10-20
  • In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell (HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined. In this report, we present an in vivo study to delineate the role of Cebpα during zebrafish embryonic myelopoiesis. We show that embryonic myelopoiesis in cebpα-deficient zebrafish mutants initiates properly but fails to produce macrophages and neutrophils. The lack of macrophages and neutrophils in the mutants is largely attributed to the cell cycle arrest of embryonic myeloid progenitors, resulting in the impairment of their maintenance and subsequent differentiation. We further show that Cebpα, perhaps acting cooperatively with Runx1, plays a critical role in embryonic neutrophil maintenance. Our findings reveal a new role of Cebpα in embryonic myelopoiesis.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
    [2]
    Boisset, JC., van Cappellen, W., Andrieu-Soler, C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium Nature, 464 (2010),pp. 116-120
    [3]
    Burns, C.E., Traver, D., Mayhall, E. et al. Hematopoietic stem cell fate is established by the Notch-Runx pathway Genes Dev., 19 (2005),pp. 2331-2342
    [4]
    Ciau-Uitz, A., Monteiro, R., Kirmizitas, A. et al. Developmental hematopoiesis: ontogeny, genetic programming and conservation Exp. Hematol., 42 (2014),pp. 669-683
    [5]
    Cumano, A., Dieterlen-Lievre, F., Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura Cell, 86 (1996),pp. 907-916
    [6]
    De Kleer, I., Willems, F., Lambrecht, B. et al. Ontogeny of myeloid cells Front. Immunol., 5 (2014),p. 423
    [7]
    Detrich, H.W., Kieran, M.W., Chan, F.Y. et al. Intraembryonic hematopoietic cell migration during vertebrate development Proc. Natl. Acad. Sci. U. S. A., 92 (1995),pp. 10713-10717
    [8]
    Friedman, A.D., Landschulz, W.H., McKnight, S.L. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells Genes Dev., 3 (1989),pp. 1314-1322
    [9]
    Friedman, A.D. C/EBPα in normal and malignant myelopoiesis Int. J. Hematol., 101 (2015),pp. 330-341
    [10]
    Gering, M., Patient, R. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos Dev. Cell, 8 (2005),pp. 389-400
    [11]
    Ginhoux, F., Greter, M., Leboeuf, M. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages Science, 330 (2010),pp. 841-845
    [12]
    Gomez Perdiguero, E., Klapproth, K., Schulz, C. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors Nature, 518 (2015),pp. 547-551
    [13]
    Herbomel, P., Thisse, B., Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process Dev. Biol., 238 (2001),pp. 274-288
    [14]
    Hoeffel, G., Wang, Y., Greter, M. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages J. Exp. Med., 209 (2012),pp. 1167-1181
    [15]
    Hoeffel, G., Chen, J., Lavin, Y. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages Immunity, 42 (2015),pp. 665-678
    [16]
    Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [17]
    Jagannathan-Bogdan, Madhunita, Zon, et al. Heamtopoiesis Development, 140 (2013),pp. 2463-2467
    [18]
    Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
    [19]
    Jin, H., Li, L., Xu, J. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression Blood, 119 (2012),pp. 5239-5249
    [20]
    Jones, L.C., Lin, M.-L., Chen, S.-S. et al. Blood, 99 (2002),pp. 2032-2036
    [21]
    Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
    [22]
    Landschulz, W.H., Johnson, P.F., Adashi, E.Y. et al. Isolation of a recombinant copy of the gene encoding C/EBP Genes Dev., 2 (1988),pp. 786-800
    [23]
    Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
    [24]
    Li, L., Jin, H., Xu, J. et al. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis Blood, 117 (2011),pp. 1359-1369
    [25]
    Liang, H.C., Zúñiga-Pflücker, J.C. Hematopoiesis: from start to immune reconstitution potential Stem Cell Res. Ther., 6 (2015),p. 52
    [26]
    Lieschke, G.J., Oates, A.C., Crowhurst, M.O. et al. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish Blood, 98 (2001),pp. 3087-3096
    [27]
    Lieschke, G.J., Oates, A.C., Paw, B.H. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning Dev. Biol., 246 (2002),pp. 274-295
    [28]
    Liongue, C., Hall, C.J., O'Connell, B.A. et al. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration Blood, 113 (2009),pp. 2535-2546
    [29]
    Liu, T.X., Rhodes, J., Deng, M. et al. Dominant-interfering C/EBPalpha stimulates primitive erythropoiesis in zebrafish Exp. Hematol., 35 (2007),pp. 230-239
    [30]
    Lyons, S.E., Shue, B.C., Lei, L. et al. Gene, 281 (2001),pp. 43-51
    [31]
    Medvinsky, A.L., Samoylina, N.L., Muller, A.M. et al. An early pre-liver intraembryonic source of CFU-S in the developing mouse Nature, 364 (1993),pp. 64-67
    [32]
    Moore, M.A., Metcalf, D. Br. J. Haematol., 18 (1970),pp. 279-296
    [33]
    Nerlov, C. The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control Trends Cell Biol., 17 (2007),pp. 318-324
    [34]
    Rosenbauer, F., Tenen, D.G. Transcription factors in myeloid development: balancing differentiation with transformation Nat. Rev. Immunol., 7 (2007),pp. 105-117
    [35]
    Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [36]
    Schulz, C., Gomez Perdiguero, E., Chorro, L. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells Science, 336 (2012),pp. 86-90
    [37]
    Sood, R., English, M.A., Belele, C.L. et al. Blood, 115 (2010),pp. 2806-2809
    [38]
    Ward, A.C., McPhee, D.O., Condron, M.M. et al. Blood, 102 (2003),pp. 3238-3240
    [39]
    Westerfield, M.
    [40]
    Xu, J., Du, L., Wen, Z.L. Myelopoiesis during zebrafish early development J. Genet. Genomics, 39 (2012),pp. 435-442
    [41]
    Xu, J., Zhu, L., He, S. et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish Dev. Cell, 34 (2015),pp. 632-641
    [42]
    Yamanaka, R., Barlow, C., Lekstrom-Himes, J. et al. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 13187-13192
    [43]
    Yuan, H., Zhou, J., Deng, M. et al. Sumoylation of CCAAT/enhancer-binding protein α promotes the biased primitive hematopoiesis of zebrafish Blood, 117 (2011),pp. 7014-7020
    [44]
    Yuan, H., Zhang, T., Liu, X. et al. Sci. Rep., 5 (2015),p. 9011
    [45]
    Zakrzewska, A., Cui, C., Stockhammer, O.W. et al. Macrophage-specific gene functions in Spi1-directed innate immunity Blood, 116 (2010),pp. e1-e11
    [46]
    Zhang, D.E., Zhang, P., Wang, N.D. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 569-574
    [47]
    Zhang, P., Iwasaki-Arai, J., Iwasaki, H. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha Immunity, 21 (2004),pp. 853-863
    [48]
    Zhen, F.H., Lan, Y.H., Yan, B. et al. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms Development, 140 (2013),pp. 3977-3985
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (65) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return