5.9
CiteScore
5.9
Impact Factor
Volume 44 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

Genetics and pathophysiology of mammalian sulfate biology

doi: 10.1016/j.jgg.2016.08.001
More Information
  • Corresponding author: E-mail address: paul.dawson@mater.uq.edu.au (Paul A. Dawson)
  • Received Date: 2016-03-21
  • Accepted Date: 2016-08-11
  • Rev Recd Date: 2016-08-08
  • Available Online: 2016-08-13
  • Publish Date: 2017-01-20
  • Nutrient sulfate is essential for numerous physiological functions in mammalian growth and development. Accordingly, disruptions to any of the molecular processes that maintain the required biological ratio of sulfonated and unconjugated substrates are likely to have detrimental consequences for mammalian physiology. Molecular processes of sulfate biology can be broadly grouped into four categories: firstly, intracellular sulfate levels are maintained by intermediary metabolism and sulfate transporters that mediate the transfer of sulfate across the plasma membrane; secondly, sulfate is converted to 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which is the universal sulfonate donor for all sulfonation reactions; thirdly, sulfotransferases mediate the intracellular sulfonation of endogenous and exogenous substrates; fourthly, sulfate is removed from substrates via sulfatases. From the literature, we curated 91 human genes that encode all known sulfate transporters, enzymes in pathways of sulfate generation, PAPS synthetases and transporters, sulfotransferases and sulfatases, with a focus on genes that are linked to human and animal pathophysiology. The predominant clinical features linked to these genes include neurological dysfunction, skeletal dysplasias, reduced fecundity and reproduction, and cardiovascular pathologies. Collectively, this review provides reference information for genetic investigations of perturbed mammalian sulfate biology.
  • loading
  • [1]
    Abitbol, M., Thibaud, J.-L., Olby, N.J. et al. Proc. Natl. Acad. Sci. U. S. A., 107 (2010),pp. 14775-14780
    [2]
    Akama, T.O., Nishida, K., Nakayama, J. et al. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene Nat. Genet., 26 (2000),pp. 237-241
    [3]
    Allen, H.E., Halley-Henderson, M.A., Hass, C.N. Chemical composition of bottled mineral water Arch. Environ. Health, 44 (1989),pp. 102-116
    [4]
    Alnouti, Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification Toxicol. Sci., 108 (2009),pp. 225-246
    [5]
    Amlal, H., Xu, J., Barone, S. et al. The chloride channel/transporter Slc26a9 regulates the systemic arterial pressure and renal chloride excretion J. Mol. Med. (Berl.), 91 (2013),pp. 561-572
    [6]
    Argüeso, P., Gipson, I.K. Quantitative analysis of mucins in mucosal secretions using indirect enzyme-linked immunosorbent assay Methods Mol. Biol., 347 (2006),pp. 277-288
    [7]
    Ashworth, J.L., Biswas, S., Wraith, E. et al. Mucopolysaccharidoses and the eye Surv. Ophthalmol., 51 (2006),pp. 1-17
    [8]
    Bakouh, N., Bienvenu, T., Thomas, A. et al. Characterization of SLC26A9 in patients with CF-like lung disease Hum. Mutat., 34 (2013),pp. 1404-1414
    [9]
    Ballabio, A., Parenti, G., Carrozzo, R. et al. Isolation and characterization of a steroid sulfatase cDNA clone: genomic deletions in patients with X-chromosome-linked ichthyosis Proc. Natl. Acad. Sci. U. S. A., 84 (1987),pp. 4519-4523
    [10]
    Ben Khelifa, H., Soyah, N., Ben-Abdallah-Bouhjar, I. et al. Gene, 527 (2013),pp. 578-583
    [11]
    Borenshtein, D., Schlieper, K.A., Rickman, B.H. et al. Decreased expression of colonic Slc26a3 and carbonic anhydrase IV as a cause of fatal infectious diarrhea in mice Infect. Immun., 77 (2009),pp. 3639-3650
    [12]
    Borghei, A., Ouyang, Y.B., Westmuckett, A.D. et al. Targeted disruption of tyrosylprotein sulfotransferase-2, an enzyme that catalyzes post-translational protein tyrosine O-sulfation, causes male infertility J. Biol. Chem., 281 (2006),pp. 9423-9431
    [13]
    Bosley, T.M., Alorainy, I.A., Oystreck, D.T. et al. Neurologic injury in isolated sulfite oxidase deficiency Can. J. Neurol. Sci., 41 (2014),pp. 42-48
    [14]
    Bowling, F.G., Heussler, H.S., McWhinney, A. et al. Plasma and urinary sulfate determination in a cohort with autism Biochem. Genet., 51 (2012),pp. 147-153
    [15]
    Bruce, L.J., Cope, D.L., Jones, G.K. et al. J. Clin. Invest., 100 (1997),pp. 1693-1707
    [16]
    Bruce, L.J., Robinson, H.C., Guizouarn, H. et al. Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1 Nat. Genet., 37 (2005),pp. 1258-1263
    [17]
    Buhl, A.E., Waldon, D.J., Baker, C.A. et al. Minoxidil sulfate is the active metabolite that stimulates hair follicles J. Invest. Dermatol., 95 (1990),pp. 553-557
    [18]
    Bullock, S.L., Fletcher, J.M., Beddington, R.S. et al. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase Genes Dev., 12 (1998),pp. 1894-1906
    [19]
    Cabral, R.M., Kurban, M., Wajid, M. et al. Genomics, 99 (2012),pp. 202-208
    [20]
    Carulli, D., Laabs, T., Geller, H.M. et al. Chondroitin sulfate proteoglycans in neural development and regeneration Curr. Opin. Neurobiol., 15 (2005),pp. 116-120
    [21]
    Cavanagh, K.T., Leipprandt, J.R., Jones, M.Z. et al. Molecular defect of caprine N-acetylglucosamine-6-sulphatase deficiency. A single base substitution creates a stop codon in the 5′-region of the coding sequence J. Inherit. Metab. Dis., 18 (1995),p. 96
    [22]
    Chim-ong, A., Thawornkuno, C., Chavalitshewinkoon-Petmitr, P. et al. Asian Pac. J. Cancer Prev., 15 (2014),pp. 6065-6070
    [23]
    Chopra, S.S., Leshchiner, I., Duzkale, H. et al. Mol. Genet. Genomic Med., 3 (2015),pp. 413-423
    [24]
    Clément, A., Wiweger, M., von der Hardt, S. et al. Regulation of zebrafish skeletogenesis by ext2/dackel and papst1/pinscher PLoS Genet., 4 (2008),p. e1000136
    [25]
    Cole, D.E., Evrovski, J. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography J. Chromatogr. A, 789 (1997),pp. 221-232
    [26]
    Cornaglia, A.I., Casasco, A., Casasco, M. et al. Dysplastic histogenesis of cartilage growth plate by alteration of sulphation pathway: a transgenic model Connect. Tissue Res., 50 (2009),pp. 232-242
    [27]
    Cosma, M.P., Pepe, S., Annunziata, I. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases Cell, 113 (2003),pp. 445-456
    [28]
    Costagliola, S., Panneels, V., Bonomi, M. et al. Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors EMBO J., 21 (2002),pp. 504-513
    [29]
    Coughtrie, M.W., Sharp, S., Maxwell, K. et al. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases Chem. Biol. Interact., 109 (1998),pp. 3-27
    [30]
    Crawley, A.C., Yogalingam, G., Muller, V.J. et al. Two mutations within a feline mucopolysaccharidosis type VI colony cause three different clinical phenotypes J. Clin. Invest., 101 (1998),pp. 109-119
    [31]
    Daniels, J., Kadlubar, S. Sulfotransferase genetic variation: from cancer risk to treatment response Drug Metab. Rev., 45 (2013),pp. 415-422
    [32]
    Darras, V.M., Hume, R., Visser, T.J. Regulation of thyroid hormone metabolism during fetal development Mol. Cell. Endocrinol., 151 (1999),pp. 37-47
    [33]
    Dawson, P.A. Sulfate in fetal development Semin. Cell Dev. Biol., 22 (2011),pp. 653-659
    [34]
    Dawson, P.A.
    [35]
    Dawson, P.A. Role of sulphate in development Reproduction, 146 (2013),pp. R81-R89
    [36]
    Dawson, P.A., Beck, L., Markovich, D. Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 13704-13709
    [37]
    Dawson, P.A., Choyce, A., Chuang, C. et al. Enhanced tumor growth in the NaS1 sulfate transporter null mouse Cancer Sci., 101 (2010),pp. 369-373
    [38]
    Dawson, P.A., Cochran, D.A., Emmerson, B.T. et al. Variable hyperhomocysteinaemia phenotype in heterozygotes for the Gly307Ser mutation in cystathionine beta-synthase Aust. N. Z. J. Med., 26 (1996),pp. 180-185
    [39]
    Dawson, P.A., Cox, A.J., Emmerson, B.T. et al. Characterisation of five missense mutations in the cystathionine beta-synthase gene from three patients with B6-nonresponsive homocystinuria Eur. J. Hum. Genet., 5 (1997),pp. 15-21
    [40]
    Dawson, P.A., Elliott, A., Bowling, F.G. Sulphate in pregnancy Nutrients, 7 (2015),pp. 1594-1606
    [41]
    Dawson, P.A., Gardiner, B., Lee, S. et al. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice J. Steroid Biochem. Mol. Biol., 112 (2008),pp. 55-62
    [42]
    Dawson, P.A., Huxley, S., Gardiner, B. et al. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse Gut, 58 (2009),pp. 910-919
    [43]
    Dawson, P.A., Markovich, D. Pathogenetics of the human SLC26 transporters Curr. Med. Chem., 12 (2005),pp. 385-396
    [44]
    Dawson, P.A., Markovich, D. Genetic polymorphisms of human sulfate transporters Curr. Pharmacogenomics, 5 (2007),pp. 262-274
    [45]
    Dawson, P.A., Petersen, S., Rodwell, R. et al. Reference intervals for plasma sulfate and urinary sulfate excretion in pregnancy BMC Pregnancy Childbirth, 15 (2015),p. 96
    [46]
    Dawson, P.A., Rakoczy, J., Simmons, D.G. Placental, renal, and ileal sulfate transporter gene expression in mouse gestation Biol. Reprod., 87 (2012),pp. 1-9
    [47]
    Dawson, P.A., Russell, C.S., Lee, S. et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice J. Clin. Invest., 120 (2010),pp. 702-712
    [48]
    Dawson, P.A., Sim, P., Mudge, D.W. et al. Sci. World J., 2013 (2013),p. 541710
    [49]
    Dawson, P.A., Sim, P., Simmons, D.G. et al. Fetal loss and hyposulfataemia in pregnant NaS1 transporter null mice J. Reprod. Dev., 57 (2011),pp. 444-449
    [50]
    Dawson, P.A., Steane, S.E., Markovich, D. Behav. Brain Res., 154 (2004),pp. 457-463
    [51]
    Dawson, P.A., Steane, S.E., Markovich, D. Impaired memory and olfactory performance in NaSi-1 sulphate transporter deficient mice Behav. Brain Res., 159 (2005),pp. 15-20
    [52]
    de Agostini, A. An unexpected role for anticoagulant heparan sulfate proteoglycans in reproduction Swiss Med. Wkly., 136 (2006),pp. 583-590
    [53]
    di Masi, A., Ascenzi, P. H2S: a “double face” molecule in health and disease Biofactors, 39 (2013),pp. 186-196
    [54]
    Dierks, T., Schmidt, B., Borissenko, L.V. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C-alpha-formylglycine generating enzyme Cell, 113 (2003),pp. 435-444
    [55]
    Diez-Roux, G., Ballabio, A. Sulfatases and human disease Annu. Rev. Genomics Hum. Genet., 6 (2005),pp. 355-379
    [56]
    Dirami, T., Rode, B., Jollivet, M. et al. Am. J. Hum. Genet., 92 (2013),pp. 760-766
    [57]
    Drögemüller, C., Tetens, J., Sigurdsson, S. et al. Identification of the bovine Arachnomelia mutation by massively parallel sequencing implicates sulfite oxidase (SUOX) in bone development PLoS Genet., 6 (2010),p. e1001079
    [58]
    Dudman, N.P., Guo, X.W., Gordon, R.B. et al. Human homocysteine catabolism: three major pathways and their relevance to development of arterial occlusive disease J. Nutr., 126 (1996),pp. 1295S-1300S
    [59]
    Eckhardt, M. The role and metabolism of sulfatide in the nervous system Mol. Neurobiol., 37 (2008),pp. 93-103
    [60]
    El-Ashry, M.F., Abd El-Aziz, M.M., Wilkins, S. et al. Invest. Ophthalmol. Vis. Sci., 43 (2002),pp. 377-382
    [61]
    Elrod, J.W., Calvert, J.W., Morrison, J. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 15560-15565
    [62]
    Evers, M., Saftig, P., Schmidt, P. et al. Targeted disruption of the arylsulfatase B gene results in mice resembling the phenotype of mucopolysaccharidosis VI Proc. Natl. Acad. Sci. U. S. A., 93 (1996),pp. 8214-8219
    [63]
    Faiyaz ul Haque, M., King, L.M., Krakow, D. et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse Nat. Genet., 20 (1998),pp. 157-162
    [64]
    Falany, J.L., Macrina, N., Falany, C.N. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation Breast Cancer Res. Treat., 74 (2002),pp. 167-176
    [65]
    Fan, G., Xiao, L., Cheng, L. et al. FEBS Lett., 467 (2000),pp. 7-11
    [66]
    Fedorenko, E., Morgan, A., Murray, E. et al. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2 Eur. J. Hum. Genet., 24 (2016),pp. 302-306
    [67]
    Fischer, A., Carmichael, K.P., Munnell, J.F. et al. Sulfamidase deficiency in a family of Dachshunds: a canine model of mucopolysaccharidosis IIIA (Sanfilippo A) Pediatr. Res., 44 (1998),pp. 74-82
    [68]
    Florin, T., Neale, G., Gibson, G.R. et al. Metabolism of dietary sulphate: absorption and excretion in humans Gut, 32 (1991),pp. 766-773
    [69]
    Florin, T.H.J., Neale, G., Goretski, S. et al. The sulfate content of foods and beverages J. Food Compos. Anal., 6 (1993),pp. 140-151
    [70]
    Forlino, A., Piazza, R., Tiveron, C. et al. Hum. Mol. Genet., 14 (2005),pp. 859-871
    [71]
    Forsberg, E., Pejler, G., Ringvall, M. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme Nature, 400 (1999),pp. 773-776
    [72]
    Franco, B., Meroni, G., Parenti, G. et al. Cell, 81 (1995),pp. 15-25
    [73]
    Gamage, N., Barnett, A., Hempel, N. et al. Human sulfotransferases and their role in chemical metabolism Toxicol. Sci., 90 (2006),pp. 5-22
    [74]
    Gaull, G., Sturman, J.A., Raiha, N.C. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues Pediatr. Res., 6 (1972),pp. 538-547
    [75]
    Goodarzi, M.O., Antoine, H.J., Azziz, R. Genes for enzymes regulating dehydroepiandrosterone sulfonation are associated with levels of dehydroepiandrosterone sulfate in polycystic ovary syndrome J. Clin. Endocrinol. Metab., 92 (2007),pp. 2659-2664
    [76]
    Guo, F.,F., Yu, T.C. et al. Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases Front. Physiol., 7 (2016),p. 156
    [77]
    Habuchi, H., Habuchi, O., Kimata, K. Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconj. J., 21 (2004),pp. 47-52
    [78]
    Habuchi, H., Nagai, N., Sugaya, N. et al. Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality J. Biol. Chem., 282 (2007),pp. 15578-15588
    [79]
    HajMohammadi, S., Enjyoji, K., Princivalle, M. et al. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis J. Clin. Invest., 111 (2003),pp. 989-999
    [80]
    Hansard, S.L., Mohammed, A.S. Maternal-fetal utilization of sulfate sulfur by the gravid ewe J. Nutr., 96 (1968),pp. 247-254
    [81]
    Hanson, S.R., Best, M.D., Wong, C.H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility Angew. Chem. Int. Ed. Engl., 43 (2004),pp. 5736-5763
    [82]
    Hastbacka, J., de la Chapelle, A., Mahtani, M.M. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping Cell, 78 (1994),pp. 1073-1087
    [83]
    Hayashida, Y., Akama, T.O., Beecher, N. et al. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 13333-13338
    [84]
    Hoglund, P., Sormaala, M., Haila, S. et al. Hum. Mutat., 18 (2001),pp. 233-242
    [85]
    Holst, C.R., Bou-Reslan, H., Gore, B.B. et al. Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival PLoS One, 2 (2007),p. e575
    [86]
    Honour, J.W., Goolamali, S.K., Taylor, N.F. Prenatal diagnosis and variable presentation of recessive X-linked ichthyosis Br. J. Dermatol, 112 (1985),pp. 423-430
    [87]
    Horikoshi, T., Kikuchi, A., Tamaru, S. et al. Prenatal findings in a fetus with contiguous gene syndrome caused by deletion of Xp22.3 that includes locus for X-linked recessive type of chondrodysplasia punctata (CDPX1) J. Obstet. Gynaecol. Res., 36 (2010),pp. 671-675
    [88]
    Huang, L.R., Coughtrie, M.W., Hsu, H.C. Down-regulation of dehydroepiandrosterone sulfotransferase gene in human hepatocellular carcinoma Mol. Cell. Endocrinol., 231 (2005),pp. 87-94
    [89]
    Huang, Y., Tang, C., Du, J. et al. Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system Oxid. Med. Cell. Longev., 2016 (2016),p. 8961951
    [90]
    Humphries, D.E., Wong, G.W., Friend, D.S. et al. Heparin is essential for the storage of specific granule proteases in mast cells Nature, 400 (1999),pp. 769-772
    [91]
    Ikeda, T., Mabuchi, A., Fukuda, A. et al. J. Hum. Genet., 46 (2001),pp. 538-543
    [92]
    Inaba, M., Yawata, A., Koshino, I. et al. Defective anion transport and marked spherocytosis with membrane instability caused by hereditary total deficiency of red cell band 3 in cattle due to a nonsense mutation J. Clin. Invest., 97 (1996),pp. 1804-1817
    [93]
    Ishii, I., Akahoshi, N., Yamada, H. et al. Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury J. Biol. Chem., 285 (2010),pp. 26358-26368
    [94]
    Isidor, B., Pichon, O., Redon, R. et al. Am. J. Hum. Genet., 87 (2010),pp. 95-100
    [95]
    Jan, Y.H., Heck, D.E., Dragomir, A.C. et al. Acetaminophen reactive intermediates target hepatic thioredoxin reductase Chem. Res. Toxicol., 27 (2014),pp. 882-894
    [96]
    Jennings, M.L. Proton fluxes associated with erythrocyte membrane anion exchange J. Membr. Biol., 28 (1976),pp. 187-205
    [97]
    Jiang, Z., Asplin, J.R., Evan, A.P. et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6 Nat. Genet., 38 (2006),pp. 474-478
    [98]
    Jolly, R.D., Hopwood, J.J., Marshall, N.R. et al. Mucopolysaccharidosis type VI in a Miniature Poodle-type dog caused by a deletion in the arylsulphatase B gene N. Z. Vet. J., 60 (2012),pp. 183-188
    [99]
    Jurecka, A., Golda, A., Opoka-Winiarska, V. et al. Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) with a predominantly cardiac phenotype Mol. Genet. Metab., 104 (2011),pp. 695-699
    [100]
    Kamiyama, S., Suda, T., Ueda, R. et al. Molecular cloning and identification of 3′-phosphoadenosine 5′-phosphosulfate transporter J. Biol. Chem., 278 (2003),pp. 25958-25963
    [101]
    Karniski, L.P., Lotscher, M., Fucentese, M. et al. Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney Am. J. Physiol., 275 (1998),pp. F79-F87
    [102]
    Kauffman, F.C. Sulfonation in pharmacology and toxicology Drug Metab. Rev., 36 (2004),pp. 823-843
    [103]
    Kisker, C., Schindelin, H., Pacheco, A. et al. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase Cell, 91 (1997),pp. 973-983
    [104]
    Klassen, C.D., Boles, J. The importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation FASEB J., 11 (1997),pp. 404-418
    [105]
    Klüppel, M. The roles of chondroitin-4-sulfotransferase-1 in development and disease Prog. Mol. Biol. Transl. Sci., 93 (2010),pp. 113-132
    [106]
    Klüppel, M., Wight, T.N., Chan, C. et al. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis Development, 132 (2005),pp. 3989-4003
    [107]
    Kowalewski, B., Lamanna, W.C., Lawrence, R. et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 10310-10315
    [108]
    Kríz, L., Bicíková, M., Hampl, R. Roles of steroid sulfatase in brain and other tissues Physiol. Res., 57 (2008),pp. 657-668
    [109]
    Lancaster, E.M., Hiatt, J.R., Zarrinpar, A. Acetaminophen hepatotoxicity: an updated review Arch. Toxicol., 89 (2015),pp. 193-199
    [110]
    Lay, K.M., Oshiro, R., Arasaki, C. et al. Role of acidification elicited by sialylation and sulfation of zona glycoproteins during oocyte maturation in porcine sperm-zona pellucida interactions J. Reprod. Dev., 57 (2011),pp. 744-751
    [111]
    Lee, S., Dawson, P.A., Hewavitharana, A.K. et al. Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity Hepatology, 43 (2006),pp. 1241-1247
    [112]
    Lee, S., Kesby, J.P., Muslim, M.D. et al. Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice Neuroreport, 18 (2007),pp. 1981-1985
    [113]
    Lin, S.H., Liu, C.M., Liu, Y.L. et al. Clustering by neurocognition for fine mapping of the schizophrenia susceptibility loci on chromosome 6p Genes Brain Behav., 8 (2009),pp. 785-794
    [114]
    Lipmann, F. Biological sulfate activation and transfer Science, 128 (1958),pp. 575-580
    [115]
    Loriette, C., Chatagner, F. Cysteine oxidase and cysteine sulfinic acid decarboxylase in developing rat liver Experientia, 34 (1978),pp. 981-982
    [116]
    Lotscher, M., Custer, M., Quabius, E.S. et al. Immunolocalization of Na/SO4-cotransport (NaSi-1) in rat kidney Pflugers Arch., 432 (1996),pp. 373-378
    [117]
    Lu, X., Sun, D., Xu, B. et al. J. Urol., 196 (2016),pp. 118-123
    [118]
    Malfait, F., Syx, D., Vlummens, P. et al. Hum. Mutat., 31 (2010),pp. 1233-1239
    [119]
    McGill, M.R., Jaeschke, H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis Pharm. Res., 30 (2013),pp. 2174-2187
    [120]
    Medani, M., Collins, D., Docherty, N.G. et al. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology Inflamm. Bowel Dis., 17 (2011),pp. 1620-1625
    [121]
    Mi, Y., Fiete, D., Baenziger, J.U. Ablation of GalNAc-4-sulfotransferase-1 enhances reproduction by altering the carbohydrate structures of luteinizing hormone in mice J. Clin. Invest., 118 (2008),p. 1815
    [122]
    Mi, Y., Fiete, D., Baenziger, J.U. Ablation of GalNAc-4-sulfotransferase-1 enhances reproduction by altering the carbohydrate structures of luteinizing hormone in mice J. Clin. Invest., 118 (2008),pp. 1815-1824
    [123]
    Mi, Y., Shapiro, S.D., Baenziger, J.U. J. Clin. Invest., 109 (2002),pp. 269-276
    [124]
    Mitsuhashi, H., Yamashita, S., Ikeuchi, H. et al. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils Shock, 24 (2005),pp. 529-534
    [125]
    Miyake, N., Kosho, T., Matsumoto, N.
    [126]
    Miyake, N., Kosho, T., Mizumoto, S. et al. Hum. Mutat., 31 (2010),pp. 966-974
    [127]
    Mulder, G.J.
    [128]
    Mulder, G.J., Jakoby, W.B.
    [129]
    Murer, H., Manganel, M., Roch-Ramel, F.
    [130]
    Neff, M.W., Beck, J.S., Koeman, J.M. et al. Partial deletion of the sulfate transporter SLC13A1 is associated with an osteochondrodysplasia in the miniature poodle breed PLoS One, 7 (2012),p. e51917
    [131]
    Nieuw Amerongen, A.V., Bolscher, J.G., Bloemena, E. et al. Sulfomucins in the human body Biol. Chem., 379 (1998),pp. 1-18
    [132]
    Nishihara, S.
    [133]
    Noordam, C., Dhir, V., McNelis, J.C. et al. N. Engl. J. Med., 360 (2009),pp. 2310-2318
    [134]
    Olson, K.R. Hydrogen sulfide as an oxygen sensor Antioxid. Redox Signal, 22 (2015),pp. 377-397
    [135]
    Oostdijk, W., Idkowiak, J., Mueller, J.W. et al. J. Clin. Endocrinol. Metab., 100 (2015),pp. E672-E680
    [136]
    Ouyang, Y.B., Crawley, J.T., Aston, C.E. et al. Reduced body weight and increased postimplantation fetal death in tyrosylprotein sulfotransferase-1-deficient mice J. Biol. Chem., 277 (2002),pp. 23781-23787
    [137]
    Paw, B.H., Davidson, A.J., Zhou, Y. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency Nat. Genet., 34 (2003),pp. 59-64
    [138]
    Pecora, F., Gualeni, B., Forlino, A. et al. Biochem. J., 398 (2006),pp. 509-514
    [139]
    Peters, L.L., Shivdasani, R.A., Liu, S.C. et al. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton Cell, 86 (1996),pp. 917-927
    [140]
    Pinto, I.P., Minasi, L.B., da Cruz, A.S. et al. Mol. Cytogenet., 7 (2014),p. 44
    [141]
    Rai, B., Sharif, F. Cervicomedullary spinal stenosis and ventriculomegaly in a child with developmental delay due to chromosome 16p12.1 microdeletion syndrome J. Child. Neurol., 30 (2015),pp. 394-396
    [142]
    Rakoczy, J., Lee, S., Weerasekera, S.J. et al. Placental and fetal cysteine dioxygenase gene expression in mouse gestation Placenta, 36 (2015),pp. 956-959
    [143]
    Rakoczy, J., Zhang, Z., Bowling, F.G. et al. Cell Res., 25 (2015),pp. 1273-1276
    [144]
    Ratzka, A., Mundlos, S., Vortkamp, A. Expression patterns of sulfatase genes in the developing mouse embryo Dev. Dyn., 239 (2010),pp. 1779-1788
    [145]
    Reuter, M.S., Musante, L., Hu, H. et al. Am. J. Med. Genet. A, 164A (2014),pp. 2753-2763
    [146]
    Richard, K., Hume, R., Kaptein, E. et al. Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain J. Clin. Endocrinol. Metab., 86 (2001),pp. 2734-2742
    [147]
    Rigante, D., Segni, G. Cardiac structural involvement in mucopolysaccharidoses Cardiology, 98 (2002),pp. 18-20
    [148]
    Rižner, T.L. The important roles of steroid sulfatase and sulfotransferases in gynecological diseases Front. Pharmacol., 7 (2016),p. 30
    [149]
    Rode, B., Dirami, T., Bakouh, N. et al. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation Hum. Mol. Genet., 21 (2012),pp. 1287-1298
    [150]
    Rudd, D., Axelsen, M., Epping, E.A. et al. Childhood-onset schizophrenia case with 2.2 Mb deletion at chromosome 3p12.2-p12.1 and two large chromosomal abnormalities at 16q22.3-q24.3 and Xq23-q28 Clin. Case Rep., 3 (2015),pp. 201-207
    [151]
    Sardiello, M., Annunziata, I., Roma, G. et al. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship Hum. Mol. Genet., 14 (2005),pp. 3203-3217
    [152]
    Sasaki, N., Hirano, T., Ichimiya, T. et al. The 3′-phosphoadenosine 5′-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells PLoS One, 4 (2009),p. e8262
    [153]
    Scheps, K.G., Francipane, L., Nevado, J. et al. Multiple copy number variants in a pediatric patient with Hb H disease and intellectual disability Am. J. Med. Genet. A, 170A (2016),pp. 986-991
    [154]
    Schwartz, N.B., Domowicz, M. Proteoglycans in brain development Glycoconj. J., 21 (2004),pp. 329-341
    [155]
    Settembre, C., Annunziata, I., Spampanato, C. et al. Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 4506-4511
    [156]
    Simmons, D.G., Rakoczy, J., Jefferis, J. et al. Placenta, 34 (2013),pp. 381-384
    [157]
    Stanley, E.L., Hume, R., Coughtrie, M.W. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification Mol. Cell. Endocrinol., 240 (2005),pp. 32-42
    [158]
    Stevenson, D.A., Carey, J.C., Byrne, J.L. et al. Analysis of skeletal dysplasias in the Utah population Am. J. Med. Genet. A, 158A (2012),pp. 1046-1054
    [159]
    Strott, C.A. Sulfonation and molecular action Endocr. Rev., 23 (2002),pp. 703-732
    [160]
    Tanaka, K., Kubushiro, K., Iwamori, Y. et al. Estrogen sulfotransferase and sulfatase: roles in the regulation of estrogen activity in human uterine endometrial carcinomas Cancer Sci., 94 (2003),pp. 871-876
    [161]
    Tetas Pont, R., Downs, L., Pettitt, L. et al. Vet. Ophthalmol. (2015)
    [162]
    Thiele, H., Sakano, M., Kitagawa, H. et al. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement Proc. Natl. Acad. Sci. U. S. A., 101 (2004),pp. 10155-10160
    [163]
    Thompson, J.N., Jones, M.Z., Dawson, G. et al. N-acetylglucosamine 6-sulphatase deficiency in a Nubian goat: a model of Sanfilippo syndrome type D (mucopolysaccharidosis IIID) J. Inherit. Metab. Dis., 15 (1992),pp. 760-768
    [164]
    Tomatsu, S., Fukuda, S., Yamagishi, A. et al. Mucopolysaccharidosis IVA: four new exonic mutations in patients with N-acetylgalactosamine-6-sulfate sulfatase deficiency Am. J. Hum. Genet., 58 (1993),pp. 950-962
    [165]
    Tong, M.H., Jiang, H., Liu, P. et al. Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice Nat. Med., 11 (2005),pp. 153-159
    [166]
    Tornberg, J., Sykiotis, G.P., Keefe, K. et al. Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism Proc. Natl. Acad. Sci. U. S. A., 108 (2011),pp. 11524-11529
    [167]
    Turner, J.M., Humayun, M.A., Elango, R. et al. Total sulfur amino acid requirement of healthy school-age children as determined by indicator amino acid oxidation technique Am. J. Clin. Nutr., 83 (2006),pp. 619-623
    [168]
    Tuysuz, B., Mizumoto, S., Sugahara, K. et al. Clin. Genet., 75 (2009),pp. 375-383
    [169]
    Uchimura, K., Kadomatsu, K., Nishimura, H. et al. Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates J. Biol. Chem., 277 (2002),pp. 1443-1450
    [170]
    Ueki, I., Roman, H.B., Valli, A. et al. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide Am. J. Physiol. Endocrinol. Metab., 301 (2011),pp. E668-E684
    [171]
    Unger, S., Lausch, E., Rossi, A. et al. Am. J. Med. Genet. A, 152A (2010),pp. 2543-2549
    [172]
    Urquhart, J.E., Williams, S.G., Bhaskar, S.S. et al. Deletion of 19q13 reveals clinical overlap with Dubowitz syndrome J. Hum. Genet., 60 (2015),pp. 781-785
    [173]
    Utriainen, P., Laakso, S., Jääskeläinen, J. et al. Metabolism, 61 (2012),pp. 1215-1219
    [174]
    van Roij, M.H., Mizumoto, S., Yamada, S. et al. Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype Am. J. Med. Genet. A, 146A (2008),pp. 2376-2384
    [175]
    Venkatachalam, K.V. Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency IUBMB Life, 55 (2003),pp. 1-11
    [176]
    Wang, J., Hegele, R.A. Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine gamma-lyase (CTH) Hum. Genet., 112 (2003),pp. 404-408
    [177]
    Wang, X.B., Du, J.B., Cui, H. Sulfur dioxide, a double-faced molecule in mammals Life Sci., 98 (2014),pp. 63-67
    [178]
    Wang, X.B., Jin, H.F., Tang, C.S. et al. The biological effect of endogenous sulfur dioxide in the cardiovascular system Eur. J. Pharmacol., 670 (2011),pp. 1-6
    [179]
    Waryah, A.M., Shahzad, M., Shaikh, H. et al. Clin. Genet., 90 (2016),pp. 90-95
    [180]
    Watanabe, M., Osada, J., Aratani, Y. et al. Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia Proc. Natl. Acad. Sci. U. S. A., 92 (1995),pp. 1585-1589
    [181]
    Wolfe, D., Dudek, S., Ritchie, M.D. et al. Visualizing genomic information across chromosomes with PhenoGram BioData Min., 6 (2013),p. 18
    [182]
    Wood, C.E. Estrogen/hypothalamus-pituitary-adrenal axis interactions in the fetus: the interplay between placenta and fetal brain J. Soc. Gynecol. Investig., 12 (2005),pp. 67-76
    [183]
    Wu, S., Sun, X., Zhu, W. et al. Cell Res., 22 (2012),pp. 1712-1715
    [184]
    Wu, S.Y., Green, W.L., Huang, W.S. et al. Alternate pathways of thyroid hormone metabolism Thyroid, 15 (2005),pp. 943-958
    [185]
    Xu, J., Song, P., Miller, M.L. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 17955-17960
    [186]
    Xu, J., Song, P., Nakamura, S. et al. J. Biol. Chem., 284 (2009),pp. 29470-29479
    [187]
    Yamaguchi, Y. Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis Semin. Cell Dev. Biol., 12 (2001),pp. 99-106
    [188]
    Yamamoto, A., Liu, M.Y., Kurogi, K. et al. Sulphation of acetaminophen by the human cytosolic sulfotransferases: a systematic analysis J. Biochem., 158 (2015),pp. 497-504
    [189]
    Yang, G., Wu, L., Jiang, B. et al. Science, 322 (2008),pp. 587-590
    [190]
    Yoshida, M., Tachibana, M., Kobayashi, E. et al. The locus responsible for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) is located on rat chromosome 2 Genomics, 20 (1994),pp. 145-146
    [191]
    Zhao, X., Onteru, S.K., Piripi, S. et al. In a shake of a lamb's tail: using genomics to unravel a cause of chondrodysplasia in Texel sheep Anim. Genet., 43 (2012),pp. 9-18
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (71) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return