5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 11
Nov.  2016
Turn off MathJax
Article Contents

Sulfur metabolism and its manipulation in crops

doi: 10.1016/j.jgg.2016.07.001
More Information
  • Corresponding author: E-mail address: skopriva@uni-koeln.de (Stanislav Kopriva)
  • Received Date: 2016-06-07
  • Accepted Date: 2016-07-12
  • Available Online: 2016-08-05
  • Publish Date: 2016-11-20
  • loading
  • [1]
    Abdin, M.Z., Akmal, M., Ram, M. et al. Constitutive expression of high-affinity sulfate transporter (HAST) gene in Indian mustard showed enhanced sulfur uptake and assimilation Protoplasma, 248 (2011),pp. 591-600
    [2]
    Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. Nature, 465 (2010),pp. 627-631
    [3]
    Avraham, T., Badani, H., Galili, S. et al. Plant Biotechnol. J., 3 (2005),pp. 71-79
    [4]
    Bednarek, P., Pislewska-Bednarek, M., Svatos, A. et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense Science, 323 (2009),pp. 101-106
    [5]
    Bell, J.M. Nutrients and toxicants in rapeseed meal: a review J. Anim. Sci., 58 (1984),pp. 996-1010
    [6]
    Bloem, E., Haneklaus, S., Schnug, E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe Front. Plant Sci., 5 (2014),p. 779
    [7]
    Bloem, E., Riemenschneider, A., Volker, J. et al. J. Exp. Bot., 55 (2004),pp. 2305-2312
    [8]
    Borg, K. Physiopathological effects of rapeseed oil: a review Acta Medica Scandinavica, 585S (1975),pp. 5-13
    [9]
    Brunel-Muguet, S., Mollier, A., Kauffmann, F. et al. Front. Plant Sci., 6 (2015),p. 993
    [10]
    Calderwood, A., Morris, R.J., Kopriva, S. Predictive sulfur metabolism - a field in flux Front. Plant Sci., 5 (2014),p. 646
    [11]
    Chan, E.K., Rowe, H.C., Corwin, J.A. et al. PLoS Biol., 9 (2011),p. e1001125
    [12]
    Chiba, Y., Ishikawa, M., Kijima, F. et al. Science, 286 (1999),pp. 1371-1374
    [13]
    Choe, Y.H., Kim, Y.S., Kim, I.S. et al. Homologous expression of gamma-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses J. Plant Physiol., 170 (2013),pp. 610-618
    [14]
    Clarke, D.B. Glucosinolates, structures and analysis in food Anal. Methods, 2 (2010),pp. 310-325
    [15]
    Clarke, J.D., Dashwood, R.H., Ho, E. Multi-targeted prevention of cancer by sulforaphane Cancer Lett., 269 (2008),pp. 291-304
    [16]
    Cornelis, M.C., El-Sohemy, A., Campos, H. Am. J. Clin. Nutr., 86 (2007),pp. 752-758
    [17]
    Dubousset, L., Etienne, P., Avice, J.C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot., 61 (2010),pp. 4313-4324
    [18]
    El Nockrashy, A.S., Kiewitt, M., Mangold, H.K. et al. Nutritive value of rapeseed meals and rapeseed protein isolates Nutr. Metab., 19 (1975),pp. 145-152
    [19]
    Elmore, J.S., Mottram, D.S., Muttucumaru, N. et al. Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation J. Agric. Food Chem., 55 (2007),pp. 5363-5366
    [20]
    Fahey, J.W., Zalcmann, A.T., Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants Phytochemistry, 56 (2001),pp. 5-51
    [21]
    Faulkner, K., Mithen, R., Williamson, G. Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli Carcinogenesis, 19 (1998),pp. 605-609
    [22]
    Foyer, C.H., Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism Planta, 133 (1976),pp. 21-25
    [23]
    Frerigmann, H., Berger, B., Gigolashvili, T. Plant Physiol., 166 (2014),pp. 349-369
    [24]
    Frerigmann, H., Gigolashvili, T. Mol. Plant, 7 (2014),pp. 814-828
    [25]
    Furuya, A.K., Sharifi, H.J., Jellinger, R.M. et al. Sulforaphane inhibits HIV infection of macrophages through Nrf2 PLoS Pathog., 12 (2016),p. e1005581
    [26]
    Gerwick, B.C., Ku, S.B., Black, C.C. Initiation of sulfate activation: a variation in c4 photosynthesis plants Science, 209 (1980),pp. 513-515
    [27]
    Geu-Flores, F., Moldrup, M.E., Bottcher, C. et al. Plant Cell, 23 (2011),pp. 2456-2469
    [28]
    Gigolashvili, T., Berger, B., Mock, H.P. et al. Plant J., 50 (2007),pp. 886-901
    [29]
    Gigolashvili, T., Yatusevich, R., Berger, B. et al. Plant J., 51 (2007),pp. 247-261
    [30]
    Glazebrook, J., Ausubel, F.M. Proc. Natl. Acad. Sci. U. S. A., 91 (1994),pp. 8955-8959
    [31]
    Graham, S. Results of case-control studies of diet and cancer in Buffalo, New York Cancer Res., 43 (1983),pp. 2409s-2413s
    [32]
    Hagan, N.D., Upadhyaya, N., Tabe, L.M. et al. The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein Plant J., 34 (2003),pp. 1-11
    [33]
    Halford, N.G., Curtis, T.Y., Muttucumaru, N. et al. The acrylamide problem: a plant and agronomic science issue J. Exp. Bot., 63 (2012),pp. 2841-2851
    [34]
    Halkier, B.A., Gershenzon, J. Biology and biochemistry of glucosinolates Ann. Rev. Plant Biol., 57 (2006),pp. 303-333
    [35]
    Harper, A.L., Trick, M., Higgins, J. et al. Nat. Biotechnol., 30 (2012),pp. 798-802
    [36]
    Hawkesford, M.J. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency J. Exp. Bot., 51 (2000),pp. 131-138
    [37]
    Hesse, H., Kreft, O., Maimann, S. et al. Current understanding of the regulation of methionine biosynthesis in plants J. Exp. Bot., 55 (2004),pp. 1799-1808
    [38]
    Hirai, M.Y., Klein, M., Fujikawa, Y. et al. J. Biol. Chem., 280 (2005),pp. 25590-25595
    [39]
    Hirai, M.Y., Sugiyama, K., Sawada, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 6478-6483
    [40]
    Holst, B., Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds Nat. Prod. Rep., 21 (2004),pp. 425-447
    [41]
    Jamieson, P.D., Semenov, M.A., Brooking, I.R. et al. Sirius: a mechanistic model of wheat response to environmental variation Eur. J. Agron., 8 (1998),pp. 161-179
    [42]
    Jost, R., Altschmied, L., Bloem, E. et al. Photosynth. Res., 86 (2005),pp. 491-508
    [43]
    Juge, N., Mithen, R.F., Traka, M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review Cell. Mol. Life Sci., 64 (2007),pp. 1105-1127
    [44]
    Kataoka, T., Watanabe-Takahashi, A., Hayashi, N. et al. Plant Cell, 16 (2004),pp. 2693-2704
    [45]
    Kertesz, M.A., Mirleau, P. The role of soil microbes in plant sulphur nutrition J. Exp. Bot., 55 (2004),pp. 1939-1945
    [46]
    Kliebenstein, D., Pedersen, D., Barker, B. et al. Genetics, 161 (2002),pp. 325-332
    [47]
    Kliebenstein, D.J., Kroymann, J., Brown, P. et al. Plant Physiol., 126 (2001),pp. 811-825
    [48]
    Kocsy, G., von Ballmoos, P., Ruegsegger, A. et al. Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury Plant Physiol., 127 (2001),pp. 1147-1156
    [49]
    Kopriva, S., Calderwood, A., Weckopp, S.C. et al. Plant sulfur and big data Plant Sci., 241 (2015),pp. 1-10
    [50]
    Kopriva, S., Mugford, S.G., Baraniecka, P. et al. Front. Plant Sci., 3 (2012),p. 163
    [51]
    Kopriva, S., Mugford, S.G., Matthewman, C. et al. Plant sulfate assimilation genes: redundancy versus specialization Plant Cell Rep., 28 (2009),pp. 1769-1780
    [52]
    Koprivova, A., Harper, A.L., Trick, M. et al. Plant Physiol., 166 (2014),pp. 442-450
    [53]
    Koprivova, A., Kopriva, S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road Front. Plant Sci., 5 (2014),p. 589
    [54]
    Koralewska, A., Posthumus, F.S., Stuiver, C.E. et al. Plant Biol. (Stuttg), 9 (2007),pp. 654-661
    [55]
    Kreft, O., Hoefgen, R., Hesse, H. Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants Plant Physiol., 131 (2003),pp. 1843-1854
    [56]
    Lavecchia, T., Rea, G., Antonacci, A. et al. Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix Crit. Rev. Food Sci. Nutr., 53 (2013),pp. 198-213
    [57]
    Lea, P.J., Sodek, L., Parry, M.A. et al. Asparagine in plants Ann. Appl. Biol., 150 (2007),pp. 1-26
    [58]
    Lindblom, S.D., Abdel-Ghany, S., Hanson, B.R. et al. Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation J. Environ. Qual., 35 (1996),pp. 726-733
    [59]
    Loudet, O., Saliba-Colombani, V., Camilleri, C. et al. Nat. Genet., 39 (2007),pp. 896-900
    [60]
    Malitsky, S., Blum, E., Less, H. et al. Plant Physiol., 148 (2008),pp. 2021-2049
    [61]
    Martin, M.N., Tarczynski, M.C., Shen, B. et al. The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants Photosynth. Res., 86 (2005),pp. 309-323
    [62]
    Matsui, T., Nakamura, N., Ojima, A. et al. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta Nutr. Metab. Cardiovasc. Dis., 26 (2016),pp. 797-807
    [63]
    McGrath, S.P., Zhao, F.J. J. Agric. Sci., 126 (1996),pp. 53-62
    [64]
    Mikkelsen, M.D., Petersen, B.L., Glawischnig, E. et al. Plant Physiol., 131 (2003),pp. 298-308
    [65]
    Mithen, R., Faulkner, K., Magrath, R. et al. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells Theor. Appl. Genet., 106 (2003),pp. 727-734
    [66]
    Moldrup, M.E., Geu-Flores, F., de Vos, M. et al. Plant Biotechnol. J., 10 (2012),pp. 435-442
    [67]
    Molvig, L., Tabe, L.M., Eggum, B.O. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 8393-8398
    [68]
    Moss, H.J., Randall, P.J., Wrigley, C.W. Alteration to grain, flour and dough quality in three wheat types with variation in soil sulfur supply J. Cereal Sci., 1 (1983),pp. 255-264
    [69]
    Mottram, D.S., Wedzicha, B.L., Dodson, A.T. Acrylamide is formed in the Maillard reaction Nature, 419 (2002),pp. 448-449
    [70]
    Muntz, K., Christov, V., Saalbach, G. et al. Genetic engineering for high methionine grain legumes Nahrung, 42 (1998),pp. 125-127
    [71]
    Muttucumaru, N., Halford, N.G., Elmore, J.S. et al. Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat J. Agric. Food Chem., 54 (2006),pp. 8951-8955
    [72]
    Nesi, N., Delourme, R., Bregeon, M. et al. C. R. Biol., 331 (2008),pp. 763-771
    [73]
    Panthee, D.R., Pantalone, V.R., Sams, C.E. et al. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds Theor. Appl. Genet., 112 (2006),pp. 546-553
    [74]
    Parisy, V., Poinssot, B., Owsianowski, L. et al. Plant J., 49 (2007),pp. 159-172
    [75]
    Pastorello, E.A., Pompei, C., Pravettoni, V. et al. Lipid transfer proteins and 2S albumins as allergens Allergy, 56 (2001),pp. 45-47
    [76]
    Pilon-Smits, E.A., Hwang, S., Mel Lytle, C. et al. Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance Plant Physiol., 119 (1999),pp. 123-132
    [77]
    Porter, J.R., Leight, R.A., Semenov, M.A. et al. Modelling the effects of climatic change and genetics modification on nitrogen use by wheat Eur. J. Agron., 4 (1995),pp. 419-429
    [78]
    Ratzka, A., Vogel, H., Kliebenstein, D.J. et al. Disarming the mustard oil bomb Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 11223-11228
    [79]
    Rausch, T., Wachter, A. Sulfur metabolism: a versatile platform for launching defence operations Trends Plant Sci., 10 (2005),pp. 503-509
    [80]
    Rose, P., Whiteman, M., Moore, P.K. et al. Nat. Prod. Rep., 22 (2005),pp. 351-368
    [81]
    Sauter, M., Moffatt, B., Saechao, M.C. et al. Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis Biochem. J., 451 (2013),pp. 145-154
    [82]
    Schweizer, F., Fernandez-Calvo, P., Zander, M. et al. Plant Cell, 25 (2013),pp. 3117-3132
    [83]
    Sieh, D., Watanabe, M., Devers, E.A. et al. New Phytol., 197 (2013),pp. 606-616
    [84]
    Singh, K., Zimmerman, A.W. Sulforaphane treatment of young men with autism spectrum disorder CNS Neurol. Disord. Drug Targets, 15 (2016),pp. 597-601
    [85]
    Sonderby, I.E., Burow, M., Rowe, H.C. et al. Plant Physiol., 153 (2010),pp. 348-363
    [86]
    Sonderby, I.E., Geu-Flores, F., Halkier, B.A. Biosynthesis of glucosinolates–gene discovery and beyond Trends Plant Sci., 15 (2010),pp. 283-290
    [87]
    Sonderby, I.E., Hansen, B.G., Bjarnholt, N. et al. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates PLoS One, 2 (2007),p. e1322
    [88]
    Song, S., Hou, W., Godo, I. et al. Soybean seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit a higher content of methionine J. Exp. Bot., 64 (2013),pp. 1917-1926
    [89]
    Stadler, R.H., Blank, I., Varga, N. et al. Acrylamide from Maillard reaction products Nature, 419 (2002),pp. 449-450
    [90]
    Tabe, L., Wirtz, M., Molvig, L. et al. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume J. Exp. Bot., 61 (2010),pp. 721-733
    [91]
    Takahashi, H., Kopriva, S., Giordano, M. et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes Annu. Rev. Plant Biol., 62 (2011),pp. 157-184
    [92]
    Toroser, D., Thormann, C.E., Osborn, T.C. et al. Theor. Appl. Genet., 91 (1995),pp. 802-808
    [93]
    Traka, M., Gasper, A.V., Melchini, A. et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate PLoS One, 3 (2008),p. e2568
    [94]
    Traka, M., Mithen, R. Glucosinolates, isothiocyanates and human health Phytochem. Rev., 8 (2009),pp. 269-282
    [95]
    Traka, M.H., Mithen, R.F. Plant science and human nutrition: challenges in assessing health-promoting properties of phytochemicals Plant Cell, 23 (2011),pp. 2483-2497
    [96]
    Traka, M.H., Saha, S., Huseby, S. et al. Genetic regulation of glucoraphanin accumulation in Beneforte broccoli New Phytol., 198 (2013),pp. 1085-1095
    [97]
    Tsakraklides, G., Martin, M., Chalam, R. et al. Plant J., 32 (2002),pp. 879-889
    [98]
    Underhill, E.W., Chisholm, M.D., Wetter, L.R. Biosynthesis of mustard oil glucosides. I. Administration of C14-labelled compounds to horseradish, nasturtium, and watercress Can. J. Biochem. Physiol., 40 (1962),pp. 1505-1514
    [99]
    Vauclare, P., Kopriva, S., Fell, D. et al. Plant J., 31 (2002),pp. 729-740
    [100]
    Wangeline, A.L., Burkhead, J.L., Hale, K.L. et al. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals J. Environ. Qual., 33 (2004),pp. 54-60
    [101]
    Weckopp, S.C., Kopriva, S. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis? Front. Plant Sci., 5 (2014),p. 773
    [102]
    Weigel, D. Plant Physiol., 158 (2012),pp. 2-22
    [103]
    Williams, J.S., Hall, S.A., Hawkesford, M.J. et al. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen Plant Physiol., 128 (2002),pp. 150-159
    [104]
    Wrigley, C.W., Du Cros, D.L., Fullington, J.G. et al. Changes in polypeptide composition and grain quality due to sulfur deficiency in wheat J. Cereal Sci., 2 (1984),pp. 15-24
    [105]
    Wu, Y., Wang, W., Messing, J. Balancing of sulfur storage in maize seed BMC Plant Biol., 12 (2012),p. 77
    [106]
    Yatusevich, R., Mugford, S.G., Matthewman, C. et al. Plant J., 62 (2010),pp. 1-11
    [107]
    Ye, H., Zhang, X.Q., Broughton, S. et al. A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley Funct. Integr. Genom., 11 (2011),pp. 103-110
    [108]
    Zhang, Y., Talalay, P., Cho, C.G. et al. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 2399-2403
    [109]
    Zhao, H., Frank, T., Tan, Y. et al. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains New Phytol., 211 (2016),pp. 926-939
    [110]
    Zorb, C., Steinfurth, D., Seling, S. et al. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization J. Agric. Food Chem., 57 (2009),pp. 3877-3885
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return