5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 8
Aug.  2016
Turn off MathJax
Article Contents

Argonaute: The executor of small RNA function

doi: 10.1016/j.jgg.2016.06.002
More Information
  • Corresponding author: E-mail address: ghows@usm.my (Ghows Azzam)
  • Received Date: 2016-01-19
  • Accepted Date: 2016-06-17
  • Rev Recd Date: 2016-05-08
  • Available Online: 2016-06-30
  • Publish Date: 2016-08-20
  • The discovery of small non-coding RNAs – microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) – represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
  • loading
  • [1]
    Ahlenstiel, C.L., Lim, H.G.W., Cooper, D.A. et al. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells Nucleic Acids Res., 40 (2012),pp. 1579-1595
    [2]
    Ameyar-Zazoua, M., Rachez, C., Souidi, M. et al. Argonaute proteins couple chromatin silencing to alternative splicing Nat. Struct. Mol. Biol., 19 (2012),pp. 998-1004
    [3]
    Arribas-Layton, M., Wu, D., Lykke-Andersen, J. et al. Structural and functional control of the eukaryotic mRNA decapping machinery Biochim. Biophys. Acta, 1829 (2013),pp. 580-589
    [4]
    Avraham, R., Yarden, Y. Regulation of signalling by microRNAs Biochem. Soc. Trans., 40 (2012),pp. 26-30
    [5]
    Azzam, G., Smibert, P., Lai, E.C. et al. Dev. Biol., 365 (2012),pp. 384-394
    [6]
    Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
    [7]
    Bagga, S., Bracht, J., Hunter, S. et al. Cell, 122 (2005),pp. 553-563
    [8]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [9]
    Baumberger, N., Baulcombe, D.C. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 11928-11933
    [10]
    Berezikov, E., Liu, N., Flynt, A.S. et al. Nat. Genet., 42 (2006),pp. 6-10
    [11]
    Béthune, J., Artus-Revel, C.G., Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells EMBO Rep., 13 (2012),pp. 716-723
    [12]
    Bohmert, K., Camus, I., Bellini, C. et al. EMBO J., 17 (1998),pp. 170-180
    [13]
    Bortolamiol-Becet, D., Hu, F., Jee, D. et al. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase Tailor Mol. Cell, 59 (2015),pp. 217-228
    [14]
    Braun, J.E., Truffault, V., Boland, A. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation Nat. Struct. Mol. Biol., 19 (2012),pp. 1324-1331
    [15]
    Brennecke, J., Aravin, A.A., Stark, A. et al. Cell, 128 (2007),pp. 1089-1103
    [16]
    Buckley, B.A., Burkhart, K.B., Gu, S.G. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality Nature, 489 (2012),pp. 447-451
    [17]
    Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
    [18]
    Carthew, R.W., Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs Cell, 136 (2009),pp. 642-655
    [19]
    Cernilogar, F.M., Onorati, M.C., Kothe, G.O. et al. Nature, 480 (2011),pp. 391-395
    [20]
    Chandradoss, S.D., Schirle, N.T., Szczepaniak, M. et al. A Dynamic search process underlies microRNA targeting Cell, 162 (2015),pp. 96-107
    [21]
    Chekulaeva, M., Mathys, H., Zipprich, J.T. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs Nat. Struct. Mol. Biol., 18 (2011),pp. 1218-1226
    [22]
    Chen, Y., Boland, A., Kuzuoǧlu-Öztürk, D. et al. A DDX6-CNOT1 complex and W-Binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing Mol. Cell, 54 (2014),pp. 737-750
    [23]
    Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing Nature, 436 (2005),pp. 740-744
    [24]
    Chung, W.-J., Agius, P., Westholm, J.O. et al. Genome Res., 21 (2011),pp. 286-300
    [25]
    Czech, B., Zhou, R., Erlich, Y. et al. Mol. Cell, 36 (2009),pp. 445-456
    [26]
    Deshpande, G., Calhoun, G., Schedl, P. Genes Dev., 19 (2005),pp. 1680-1685
    [27]
    Diederichs, S., Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression Cell, 131 (2007),pp. 1097-1108
    [28]
    Djuranovic, S., Nahvi, A., Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay Science, 336 (2012),pp. 237-240
    [29]
    Drinnenberg, I.A., Weinberg, D.E., Xie, K.T. et al. RNAi in budding yeast Science, 326 (2009),pp. 544-550
    [30]
    Eichhorn, S.W., Guo, H., McGeary, S.E. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues Mol. Cell, 56 (2014),pp. 104-115
    [31]
    Eulalio, A., Huntzinger, E., Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay Nat. Struct. Mol. Biol., 15 (2008),pp. 346-353
    [32]
    Eulalio, A., Rehwinkel, J., Stricker, M. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing Genes Dev., 21 (2007),pp. 2558-2570
    [33]
    Fabian, M.R., Mathonnet, G., Sundermeier, T. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation Mol. Cell, 35 (2009),pp. 868-880
    [34]
    Fabian, M.R., Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC Nat. Struct. Mol. Biol., 19 (2012),pp. 586-593
    [35]
    Faehnle, C.R., Elkayam, E., Haase, A.D. et al. The making of a slicer: activation of human Argonaute-1 Cell Rep., 3 (2013),pp. 1901-1909
    [36]
    Flynt, A.S., Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity Nat. Rev. Genet., 9 (2008),pp. 831-842
    [37]
    Forstemann, K., Horwich, M.D., Wee, L. et al. Cell, 130 (2007),pp. 287-297
    [38]
    Forstemann, K., Tomari, Y., Du, T. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein PLoS Biol., 3 (2005),p. e236
    [39]
    Fu, S., Nien, C.-Y., Liang, H.-L. et al. Development, 141 (2014),pp. 2108-2118
    [40]
    Fukao, A., Mishima, Y., Takizawa, N. et al. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans Mol. Cell, 56 (2014),pp. 79-89
    [41]
    Fukaya, T., Iwakawa, H.-O., Tomari, Y. Mol. Cell, 56 (2014),pp. 67-78
    [42]
    Fukaya, T., Tomari, Y. Mol. Cell, 48 (2012),pp. 825-836
    [43]
    Gagnon, K.T., Li, L., Chu, Y. et al. RNAi factors are present and active in human cell nuclei Cell Rep., 6 (2013),pp. 211-221
    [44]
    Ghildiyal, M., Xu, J., Seitz, H. et al. RNA, 16 (2010),pp. 43-56
    [45]
    Gibbings, D., Mostowy, S., Jay, F. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity Nat. Cell Biol., 14 (2012),pp. 1314-1321
    [46]
    Giraldez, A.J., Mishima, Y., Rihel, J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs Science, 312 (2006),pp. 75-79
    [47]
    Gregory, R.I., Chendrimada, T.P., Cooch, N. et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing Cell, 123 (2005),pp. 631-640
    [48]
    Grimaud, C., Bantignies, F., Pal-Bhadra, M. et al. RNAi components are required for nuclear clustering of Polycomb group response elements Cell, 124 (2006),pp. 957-971
    [49]
    Gu, W., Lee, H.C., Chaves, D. et al. Cell, 151 (2012),pp. 1488-1500
    [50]
    Guang, S., Bochner, A.F., Burkhart, K.B. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription Nature, 465 (2010),pp. 1097-1101
    [51]
    Guang, S., Bochner, A.F., Pavelec, D.M. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus Science, 321 (2008),pp. 537-541
    [52]
    Guo, H., Ingolia, N.T., Weissman, J.S. et al. Mammalian microRNAs predominantly act to decrease target mRNA levels Nature, 466 (2010),pp. 835-840
    [53]
    Hauptmann, J., Dueck, A., Harlander, S. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes Nat. Struct. Mol. Biol., 20 (2013),pp. 814-817
    [54]
    Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J. et al. Plant Cell, 22 (2010),pp. 321-334
    [55]
    Helwak, A., Kudla, G., Dudnakova, T. et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding Cell, 153 (2013),pp. 654-665
    [56]
    Hendrickson, D.G., Hogan, D.J., McCullough, H.L. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA PLoS Biol., 7 (2009),p. e1000238
    [57]
    Herzog, V.A., Ameres, S.L. Approaching the golden fleece a molecule at a time: biophysical insights into Argonaute-instructed nucleic acid interactions Mol. Cell, 59 (2015),pp. 4-7
    [58]
    Höck, J., Meister, G. The Argonaute protein family Genome Biol., 9 (2008),p. 210
    [59]
    Horman, S.R., Janas, M.M., Litterst, C. et al. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets Mol. Cell, 50 (2013),pp. 356-367
    [60]
    Huang, V., Li, L.C. Demystifying the nuclear function of Argonaute proteins RNA Biol., 11 (2014),pp. 18-24
    [61]
    Humphreys, D.T., Westman, B.J., Martin, D.I.K. et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 16961-16966
    [62]
    Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay Nat. Rev. Genet., 12 (2011),pp. 99-110
    [63]
    Huntzinger, E., Kuzuoglu-Öztürk, D., Braun, J.E. et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets Nucleic Acids Res., 41 (2013),pp. 978-994
    [64]
    Hutvagner, G., Simard, M.J. Argonaute proteins: key players in RNA silencing Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 22-32
    [65]
    Iki, T., Yoshikawa, M., Nishikiori, M. et al. Mol. Cell, 39 (2010),pp. 282-291
    [66]
    Ipsaro, J.J., Joshua-Tor, L. From guide to target: molecular insights into eukaryotic RNA-interference machinery Nat. Struct. Mol. Biol., 22 (2015),pp. 20-28
    [67]
    Iwasaki, S., Kobayashi, M., Yoda, M. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes Mol. Cell, 39 (2010),pp. 292-299
    [68]
    Jackson, R.J., Hellen, C.U.T., Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 113-127
    [69]
    Jannot, G., Boisvert, M.-E.L., Banville, I.H. et al. RNA, 14 (2008),pp. 829-835
    [70]
    Jinek, M., Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference Nature, 457 (2009),pp. 405-412
    [71]
    Jinek, M., Fabian, M.R., Coyle, S.M. et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation Nat. Struct. Mol. Biol., 17 (2010),pp. 238-240
    [72]
    Johnston, M., Geoffroy, M.C., Sobala, A. et al. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells Mol. Biol. Cell., 21 (2010),pp. 1462-1469
    [73]
    Johnston, M., Hutvagner, G. Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation Silence, 2 (2011),p. 5
    [74]
    Jones, C.I., Grima, D.P., Waldron, J.A. et al. RNA Biol., 10 (2013),pp. 1345-1355
    [75]
    Kawamata, T., Seitz, H., Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding Nat. Struct. Mol. Biol., 16 (2009),pp. 953-960
    [76]
    Kawamata, T., Tomari, Y. Making RISC Trends Biochem. Sci., 35 (2010),pp. 368-376
    [77]
    Khvorova, A., Reynolds, A., Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias Cell, 115 (2003),pp. 209-216
    [78]
    Kim, K., Lee, Y.S., Harris, D. et al. Cold Spring Harb. Symp. Quant. Biol., 71 (2006),pp. 39-44
    [79]
    Kim, V.N., Nam, J.W. Genomics of microRNA Trends Genet., 22 (2006),pp. 165-173
    [80]
    Kozlov, G., Safaee, N., Rosenauer, A. et al. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein J. Biol. Chem., 285 (2010),pp. 13599-13606
    [81]
    Krützfeldt, J., Rajewsky, N., Braich, R. et al. Nature, 438 (2005),pp. 685-689
    [82]
    Kuzuoǧlu-Öztürk, D., Huntzinger, E., Schmidt, S. et al. Nucleic Acids Res., 40 (2012),pp. 5651-5665
    [83]
    Kwak, P.B., Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly Nat. Struct. Mol. Biol., 19 (2012),pp. 145-151
    [84]
    Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation Nat. Genet., 30 (2002),pp. 363-364
    [85]
    Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genetics, 11 (2010),pp. 204-220
    [86]
    Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
    [87]
    Lee, Y.S., Nakahara, K., Pham, J.W. et al. Cell, 117 (2004),pp. 69-81
    [88]
    Leuschner, P.J.F., Ameres, S.L., Kueng, S. et al. Cleavage of the siRNA passenger strand during RISC assembly in human cells EMBO Rep., 7 (2006),pp. 314-320
    [89]
    Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W. et al. Prediction of mammalian microRNA targets Cell, 115 (2003),pp. 787-798
    [90]
    Lin, H., Spradling, A.C. Development, 124 (1997),pp. 2463-2476
    [91]
    Liu, J., Carmell, M.A., Rivas, F.V. et al. Argonaute2 is the catalytic engine of mammalian RNAi Science, 305 (2004),pp. 1437-1441
    [92]
    Liu, Q., Rand, T.A., Kalidas, S. et al. Science, 301 (2003),pp. 1921-1925
    [93]
    Liu, Y., Ye, X., Jiang, F. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation Science, 325 (2009),pp. 750-753
    [94]
    MacRae, I.J., Ma, E., Zhou, M. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 512-517
    [95]
    Mallory, A., Vaucheret, H. Form, function, and regulation of ARGONAUTE proteins Plant Cell, 22 (2010),pp. 3879-3889
    [96]
    Martin, F., Kohler, A., Murat, C. et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis Nature, 464 (2010),pp. 1033-1038
    [97]
    Martin, R., Smibert, P., Yalcin, A. et al. Mol. Cell. Biol., 29 (2009),pp. 861-870
    [98]
    Martinez, N.J., Gregory, R.I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance RNA, 19 (2013),pp. 605-612
    [99]
    Mathys, H., Basquin, J., Ozgur, S. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression Mol. Cell, 54 (2014),pp. 751-765
    [100]
    Mazumder, A., Bose, M., Chakraborty, A. et al. A transient reversal of miRNA-mediated repression controls macrophage activation EMBO Rep., 14 (2013),pp. 1008-1016
    [101]
    Meister, G., Landthaler, M., Patkaniowska, A. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs Mol. Cell, 15 (2004),pp. 185-197
    [102]
    Merchant, S.S., Prochnik, S.E., Vallon, O. et al. The chlamydomonas genome reveals the evolution of key animal and plant functions Science, 318 (2007),pp. 245-250
    [103]
    Michalik, K.M., Bottcher, R., Forstemann, K. Nucleic Acids Res., 40 (2012),pp. 9596-9603
    [104]
    Mishima, Y., Fukao, A., Kishimoto, T. et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 1104-1109
    [105]
    Miyoshi, K., Tsukumo, H., Nagami, T. et al. Genes Dev., 19 (2005),pp. 2837-2848
    [106]
    Morel, J.B., Godon, C., Mourrain, P. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance Plant Cell, 14 (2002),pp. 629-639
    [107]
    Moshkovich, N., Nisha, P., Boyle, P.J. et al. RNAi-independent role for argonaute2 in CTCF/CP190 chromatin insulator function Genes Dev., 25 (2011),pp. 1686-1701
    [108]
    Nakahara, K., Kim, K., Sciulli, C. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 12023-12028
    [109]
    Nishi, K., Nishi, A., Nagasawa, T. et al. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus RNA, 19 (2013),pp. 17-35
    [110]
    Nishihara, T., Zekri, L., Braun, J.E. et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation Nucleic Acids Res., 41 (2013),pp. 8692-8705
    [111]
    Noland, C.L., Ma, E., Doudna, J.A. siRNA repositioning for guide strand selection by human dicer complexes Mol. Cell, 43 (2011),pp. 110-121
    [112]
    Nonomura, K., Morohoshi, A., Nakano, M. et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice Plant Cell, 19 (2007),pp. 2583-2594
    [113]
    Ohrt, T., Staroske, W., Mütze, J. et al. Fluorescence cross-correlation spectroscopy reveals mechanistic insights into the effect of 2′-O-methyl modified siRNAs in living cells Biophys. J., 100 (2011),pp. 2981-2990
    [114]
    Okamura, K., Hagen, J.W., Duan, H. et al. Cell, 130 (2007),pp. 89-100
    [115]
    Okamura, K., Ishizuka, A., Siomi, H. et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways Genes Dev., 18 (2004),pp. 1655-1666
    [116]
    Okamura, K., Lai, E.C. Endogenous small interfering RNAs in animals Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 673-678
    [117]
    Okamura, K., Liu, N., Lai, E.C. Mol. Cell, 36 (2009),pp. 431-444
    [118]
    Pare, J.M., Tahbaz, N., López-Orozco, J. et al. Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies Mol. Biol. Cell, 20 (2009),pp. 3273-3284
    [119]
    Pfaff, J., Hennig, J., Herzog, F. et al. Structural features of Argonaute-GW182 protein interactions Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E3770-E3779
    [120]
    Piao, X., Zhang, X., Wu, L. et al. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells Mol. Cell. Biol., 30 (2010),pp. 1486-1494
    [121]
    Qi, H.H., Ongusaha, P.P., Myllyharju, J. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability Nature, 455 (2008),pp. 421-424
    [122]
    Rand, T.A., Petersen, S., Du, F. et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation Cell, 123 (2005),pp. 621-629
    [123]
    Reimão-Pinto, M.M., Ignatova, V., Burkard, T.R. et al. Mol. Cell, 59 (2015),pp. 203-216
    [124]
    Rhoades, M.W., Reinhart, B.J., Lim, L.P. et al. Prediction of plant microRNA targets Cell, 110 (2002),pp. 513-520
    [125]
    Rissland, O.S., Lai, E.C. RNA silencing in Monterey Development, 138 (2011),pp. 3093-3102
    [126]
    Robb, G.B., Rana, T.M. RNA helicase A interacts with RISC in human cells and functions in RISC loading Mol. Cell, 26 (2007),pp. 523-537
    [127]
    Rouya, C., Siddiqui, N., Morita, M. et al. RNA, 20 (2014),pp. 1398-1409
    [128]
    Ruby, J.G., Jan, C.H., Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing Nature, 448 (2007),pp. 83-86
    [129]
    Salomon, W.E., Jolly, S.M., Moore, M.J. et al. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides Cell, 162 (2015),pp. 84-95
    [130]
    Schmid, M., Davison, T.S., Henz, S.R. et al. Nat. Genet., 37 (2005),pp. 501-506
    [131]
    Scholthof, H.B., Alvarado, V.Y., Vega-Arreguin, J.C. et al. Plant Physiol., 156 (2011),pp. 1548-1555
    [132]
    Schürmann, N., Trabuco, L.G., Bender, C. et al. Molecular dissection of human Argonaute proteins by DNA shuffling Nat. Struct. Mol. Biol., 20 (2013),pp. 818-826
    [133]
    Schwarz, D.S., Hutvágner, G., Du, T. et al. Asymmetry in the assembly of the RNAi enzyme complex Cell, 115 (2003),pp. 199-208
    [134]
    Seitz, H., Tushir, J.S., Zamore, P.D. Silence, 2 (2011),p. 4
    [135]
    Selbach, M., Selbach, M., Schwanhäusser, B. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
    [136]
    Sempere, L.F., Freemantle, S., Pitha-Rowe, I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation Genome Biol., 5 (2004)
    [137]
    Shen, J., Xia, W., Khotskaya, Y.B. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 Nature, 497 (2013),pp. 383-387
    [138]
    Singh, R.K., Gase, K., Baldwin, I.T. et al. Molecular evolution and diversification of the Argonaute family of proteins in plants BMC Plant Biol., 15 (2015),p. 23
    [139]
    Smibert, P., Yang, J.-S.S., Azzam, G. et al. Homeostatic control of Argonaute stability by microRNA availability Nat. Struct. Mol. Biol., 20 (2013),pp. 789-795
    [140]
    Song, J.-J.J., Smith, S.K., Hannon, G.J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity Science, 305 (2004),pp. 1434-1437
    [141]
    Su, H., Meng, S., Lu, Y. et al. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing Mol. Cell, 43 (2011),pp. 97-109
    [142]
    Subtelny, A.O., Eichhorn, S.W., Chen, G.R. et al. Poly(A)-tail profiling reveals an embryonic switch in translational control Nature, 508 (2014),pp. 66-71
    [143]
    Taliaferro, J.M., Aspden, J.L., Bradley, T. et al. Genes Dev., 27 (2013),pp. 378-389
    [144]
    Tan, G.S., Garchow, B.G., Liu, X. et al. Expanded RNA-binding activities of mammalian Argonaute 2 Nucleic Acids Res., 37 (2009),pp. 7533-7545
    [145]
    Tavsanli, B.C., Ostrin, E.J., Burgess, H.K. et al. Dev. Biol., 272 (2004),pp. 231-247
    [146]
    Teves, S.S., Henikoff, S. The heat shock response: a case study of chromatin dynamics in gene regulation Biochem. Cell Biol., 91 (2013),pp. 42-48
    [147]
    Thomsen, S., Azzam, G., Kaschula, R. et al. Developmental RNA processing of 3′UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs Development, 137 (2010),pp. 2951-2960
    [148]
    Tolia, N.H., Joshua-Tor, L. Slicer and the argonautes Nat. Chem. Biol., 3 (2007),pp. 36-43
    [149]
    Tomari, Y., Du, T., Zamore, P.D. Cell, 130 (2007),pp. 299-308
    [150]
    Tomari, Y., Matranga, C., Haley, B. et al. A protein sensor for siRNA asymmetry Science, 306 (2004),pp. 1377-1380
    [151]
    van Rooij, E., Sutherland, L.B., Qi, X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science, 316 (2007),pp. 575-579
    [152]
    Vaucheret, H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations Genes Dev., 20 (2006),pp. 759-771
    [153]
    Vaucheret, H. Plant ARGONAUTES Trends Plant Sci., 13 (2008),pp. 350-358
    [154]
    Vaucheret, H., Vazquez, F., Crété, P. et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development Genes Dev., 18 (2004),pp. 1187-1197
    [155]
    Wakiyama, M., Takimoto, K., Ohara, O. et al. Genes Dev., 21 (2007),pp. 1857-1862
    [156]
    Wei, W., Ba, Z., Gao, M. et al. A role for small RNAs in DNA double-strand break repair Cell, 149 (2012),pp. 101-112
    [157]
    Weinmann, L., Hock, J., Ivacevic, T. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs Cell, 136 (2009),pp. 496-507
    [158]
    Wightman, B., Ha, I., Ruvkun, G. Cell, 75 (1993),pp. 855-862
    [159]
    Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4034-4039
    [160]
    Wu, L., Fan, J., Belasco, J.G. Importance of translation and nonnucleolytic Ago proteins for on-target RNA interference Curr. Biol., 18 (2008),pp. 1327-1332
    [161]
    Wu, S., Huang, S., Ding, J. et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region Oncogene, 29 (2010),pp. 2302-2308
    [162]
    Yigit, E., Batista, P.J., Bei, Y. et al. Cell, 127 (2006),pp. 747-757
    [163]
    Yoda, M., Kawamata, T., Paroo, Z. et al. ATP-dependent human RISC assembly pathways Nat. Struct. Mol. Biol., 17 (2010),pp. 17-23
    [164]
    Zeng, Y., Sankala, H., Zhang, X. et al. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies Biochem. J., 413 (2008),pp. 429-436
    [165]
    Zhang, H., Xia, R., Meyers, B.C. et al. Evolution, functions, and mysteries of plant ARGONAUTE proteins Curr. Opin. Plant Biol., 27 (2015),pp. 84-90
    [166]
    Zhang, P., Zhang, H. EMBO Rep., 14 (2013),pp. 568-576
    [167]
    Zheng, X., Zhu, J., Kapoor, A. et al. EMBO J., 26 (2007),pp. 1691-1701
    [168]
    Zilberman, D., Cao, X., Jacobsen, S.E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation Science, 299 (2003),pp. 716-719
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return