[1] |
Aida, T., Chiyo, K., Usami, T. et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice Genome Biol., 16 (2015),p. 87
|
[2] |
Anders, C., Niewoehner, O., Duerst, A. et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease Nature, 513 (2014),pp. 569-573
|
[3] |
Bae, S., Kweon, J., Kim, H.S. et al. Microhomology-based choice of Cas9 nuclease target sites Nat. Methods, 11 (2014),pp. 705-706
|
[4] |
Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution Science, 344 (2014),pp. 707-708
|
[5] |
Bhattacharya, D., Marfo, C.A., Li, D. et al. Dev. Biol., 408 (2015),pp. 196-204
|
[6] |
Brinkman, E.K., Chen, T., Amendola, M. et al. Easy quantitative assessment of genome editing by sequence trace decomposition Nucleic Acids Res., 42 (2014),p. e168
|
[7] |
Chari, R., Mali, P., Moosburner, M. et al. Nat. Methods, 12 (2015),pp. 823-826
|
[8] |
Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
|
[9] |
Chen, X., Xu, F., Zhu, C. et al. Sci. Rep., 4 (2014),p. 7581
|
[10] |
Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
|
[11] |
Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
|
[12] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[13] |
Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
|
[14] |
Dahlman, J.E., Abudayyeh, O.O., Joung, J. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease Nat. Biotechnol., 33 (2015),pp. 1159-1161
|
[15] |
Dang, Y., Jia, G., Choi, J. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency Genome Biol., 16 (2015),p. 280
|
[16] |
Doench, J.G., Fusi, N., Sullender, M. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 Nat. Biotechnol., 34 (2016),pp. 184-191
|
[17] |
Doench, J.G., Hartenian, E., Graham, D.B. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation Nat. Biotechnol., 32 (2014),pp. 1262-1267
|
[18] |
Elliott, B., Richardson, C., Winderbaum, J. et al. Gene conversion tracts from double-strand break repair in mammalian cells Mol. Cell. Biol., 18 (1998),pp. 93-101
|
[19] |
Essletzbichler, P., Konopka, T., Santoro, F. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line Genome Res., 24 (2014),pp. 2059-2065
|
[20] |
Farboud, B., Meyer, B.J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design Genetics, 199 (2015),pp. 959-971
|
[21] |
Findlay, G.M., Boyle, E.A., Hause, R.J. et al. Saturation editing of genomic regions by multiplex homology-directed repair Nature, 513 (2014),pp. 120-123
|
[22] |
Frock, R.L., Hu, J., Meyers, R.M. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases Nat. Biotechnol., 33 (2015),pp. 179-186
|
[23] |
Fusi, N., Smith, I., Doench, J. et al. bioRxiv (2015)
|
[24] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[25] |
Gantz, V.M., Jasinskiene, N., Tatarenkova, O. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E6736-E6743
|
[26] |
Glemzaite, M., Balciunaite, E., Karvelis, T. et al. RNA Biol., 12 (2015),pp. 1-4
|
[27] |
Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
|
[28] |
Hart, T., Chandrashekhar, M., Aregger, M. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities Cell, 163 (2015),pp. 1515-1526
|
[29] |
Heigwer, F., Kerr, G., Boutros, M. E-CRISP: fast CRISPR target site identification Nat. Methods, 11 (2014),pp. 122-123
|
[30] |
Hinz, J.M., Laughery, M.F., Wyrick, J.J. Biochemistry, 54 (2015),pp. 7063-7066
|
[31] |
Housden, B.E., Valvezan, A.J., Kelley, C. et al. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi Sci. Signal, 8 (2015),p. rs9
|
[32] |
Hou, Z., Zhang, Y., Propson, N.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 15644-15649
|
[33] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[34] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[35] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[36] |
Iyer, V., Shen, B., Zhang, W. et al. Off-target mutations are rare in Cas9-modified mice Nat. Methods, 12 (2015),p. 479
|
[37] |
Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases Trends Genet., 12 (1996),pp. 224-228
|
[38] |
Jiang, F., Taylor, D.W., Chen, J.S. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage Science, 351 (2016),pp. 867-871
|
[39] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[40] |
Jinek, M., Jiang, F., Taylor, D.W. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation Science, 343 (2014),p. 1247997
|
[41] |
Karvelis, T., Gasiunas, G., Young, J. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements Genome Biol., 16 (2015),p. 253
|
[42] |
Kim, D., Bae, S., Park, J. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat. Methods, 12 (2015),pp. 237-243
|
[43] |
Kim, D., Kim, S., Kim, S. et al. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq Genome Res., 26 (2016),pp. 406-415
|
[44] |
Kim, H., Um, E., Cho, S.-R. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations Nat. Methods, 8 (2011),pp. 941-943
|
[45] |
Kim, S., Kim, D., Cho, S.W. et al. Genome Res., 24 (2014),pp. 1012-1019
|
[46] |
Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
|
[47] |
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Nat. Biotechnol., 33 (2015),pp. 1293-1298
|
[48] |
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities Nature, 523 (2015),pp. 481-485
|
[49] |
Koller, B.H., Kim, H.S., Latour, A.M. et al. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 10730-10734
|
[50] |
Kotani, H., Taimatsu, K., Ohga, R. et al. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish PLoS One, 10 (2015),p. e0128319
|
[51] |
Larcher, T., Lafoux, A., Tesson, L. et al. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy PLoS One, 9 (2014),p. e110371
|
[52] |
Liang, X., Potter, J., Kumar, S. et al. J. Biotechnol., 208 (2015),pp. 44-53
|
[53] |
Lin, Y., Cradick, T.J., Brown, M.T. et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences Nucleic Acids Res., 42 (2014),pp. 7473-7485
|
[54] |
Liu, X., Homma, A., Sayadi, J. et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system Sci. Rep., 6 (2016),p. 19675
|
[55] |
Malina, A., Cameron, C.J.F., Robert, F. et al. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing Nat. Commun., 6 (2015),p. 10124
|
[56] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[57] |
Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
|
[58] |
Mei, Y., Wang, Y., Chen, H. et al. Recent progress in CRISPR/Cas9 technology J. Genet. Genomics, 43 (2016),pp. 63-75
|
[59] |
Ménoret, S., De Cian, A., Tesson, L. et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins Sci. Rep., 5 (2015),p. 14410
|
[60] |
Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.-D. et al. Nat. Methods, 12 (2015),pp. 982-988
|
[61] |
Müller, M., Lee, C.M., Gasiunas, G. et al. Mol. Ther., 24 (2015),pp. 636-644
|
[62] |
Müller, U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis Mech. Dev., 82 (1999),pp. 3-21
|
[63] |
Nishimasu, H., Ran, F.A., Hsu, P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156 (2014),pp. 935-949
|
[64] |
Paix, A., Folkmann, A., Rasoloson, D. et al. Genetics, 201 (2015),pp. 47-54
|
[65] |
Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
|
[66] |
Rahdar, M., McMahon, M.A., Prakash, T.P. et al. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E7110-E7117
|
[67] |
Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
|
[68] |
Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
|
[69] |
Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
|
[70] |
Shi, J., Wang, E., Milazzo, J.P. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains Nat. Biotechnol., 33 (2015),pp. 661-667
|
[71] |
Shmakov, S., Abudayyeh, O.O., Makarova, K.S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems Mol. Cell, 60 (2015),pp. 385-397
|
[72] |
Skarnes, W.C., Rosen, B., West, A.P. et al. A conditional knockout resource for the genome-wide study of mouse gene function Nature, 474 (2011),pp. 337-342
|
[73] |
Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
|
[74] |
Song, J., Yang, D., Xu, J. et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency Nat. Commun., 7 (2016),p. 10548
|
[75] |
Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool PLoS One, 10 (2015),p. e0124633
|
[76] |
Sunagawa, G.A., Sumiyama, K., Ukai-Tadenuma, M. et al. Cell Rep., 14 (2016),pp. 662-677
|
[77] |
Tabebordbar, M., Zhu, K., Cheng, J.K.W. et al. Science, 351 (2016),pp. 407-411
|
[78] |
Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
|
[79] |
Uddin, B., Chen, N.-P., Panic, M. et al. Genome editing through large insertion leads to the skipping of targeted exon BMC Genomics, 16 (2015),p. 1082
|
[80] |
Varshney, G.K., Pei, W., LaFave, M.C. et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9 Genome Res., 25 (2015),pp. 1030-1042
|
[81] |
Vouillot, L., Thélie, A., Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases G3 (Bethesda), 5 (2015),pp. 407-415
|
[82] |
Wang, T., Birsoy, K., Hughes, N.W. et al. Identification and characterization of essential genes in the human genome Science, 350 (2015),pp. 1096-1101
|
[83] |
Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
|
[84] |
Wang, X., Wang, Y., Wu, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors Nat. Biotechnol., 33 (2015),pp. 175-178
|
[85] |
Wong, N., Liu, W., Wang, X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system Genome Biol., 16 (2015),p. 218
|
[86] |
Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
|
[87] |
Xu, H., Xiao, T., Chen, C.-H. et al. Sequence determinants of improved CRISPR sgRNA design Genome Res., 25 (2015),pp. 1147-1157
|
[88] |
Yang, L., Guell, M., Byrne, S. et al. Optimization of scarless human stem cell genome editing Nucleic Acids Res., 41 (2013),pp. 9049-9061
|
[89] |
Yang, Z., Steentoft, C., Hauge, C. et al. Fast and sensitive detection of indels induced by precise gene targeting Nucleic Acids Res., 43 (2015),p. e59
|
[90] |
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
|