[1] |
Ansai, S., Inohaya, K., Yoshiura, Y. et al. Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka Dev. Growth Differ., 56 (2014),pp. 98-107
|
[2] |
Behringer, R., Gerstentein, M., Vintersten, K. et al.
|
[3] |
Bolukbasi, M.F., Gupta, A., Wolfe, S.A. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery Nat. Methods, 13 (2015),pp. 41-50
|
[4] |
Chenouard, V., Brusselle, L., Heslan, J.-M. et al. A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis J. Genet. Genomics, 43 (2016),pp. 341-348
|
[5] |
Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
|
[6] |
Condamine, T., Le Texier, L., Howie, D. et al. Tmem176B and Tmem176A are associated with the immature state of dendritic cells J. Leukoc. Biol., 88 (2010),pp. 507-515
|
[7] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[8] |
Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
|
[9] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[10] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[11] |
Kang, S., Tsai, L.T., Zhou, Y. et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis Nat. Cell Biol., 17 (2015),pp. 44-56
|
[12] |
Kim, S., Kim, D., Cho, S.W. et al. Genome Res., 24 (2014),pp. 1012-1019
|
[13] |
Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
|
[14] |
Kraft, K., Geuer, S., Will, A.J. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice Cell Rep., 10 (2015),pp. 833-839
|
[15] |
Louvet, C., Chiffoleau, E., Heslan, M. et al. Identification of a new member of the CD20/FcepsilonRIbeta family overexpressed in tolerated allografts Am. J. Transplant., 5 (2005),pp. 2143-2153
|
[16] |
Maeda, Y., Ide, T., Koike, M. et al. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus Nat. Cell Biol., 10 (2008),pp. 1135-1145
|
[17] |
Menoret, S., De Cian, A., Tesson, L. et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins Sci. Rep., 5 (2015),p. 14410
|
[18] |
Menoret, S., Fontaniere, S., Jantz, D. et al. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases FASEB J., 27 (2013),pp. 703-711
|
[19] |
Otsubo, T., Hida, Y., Ohga, N. et al. Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells Cancer Sci., 105 (2014),pp. 560-567
|
[20] |
Ramakrishna, S., Kwaku Dad, A.B., Beloor, J. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA Genome Res., 24 (2014),pp. 1020-1027
|
[21] |
Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
|
[22] |
Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
|
[23] |
Ryu, S.H., Kim, K.H., Kim, H.B. et al. Oncogenic Ras-mediated downregulation of Clast1/LR8 is involved in Ras-mediated neoplastic transformation and tumorigenesis in NIH3T3 cells Cancer Sci., 101 (2010),pp. 1990-1996
|
[24] |
Segovia, M., Louvet, C., Charnet, P. et al. Autologous dendritic cells prolong allograft survival through Tmem176b-dependent antigen cross-presentation Am. J. Transplant., 14 (2014),pp. 1021-1031
|
[25] |
Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
|
[26] |
Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool PLoS One, 10 (2015),p. e0124633
|
[27] |
Tesson, L., Remy, S., Menoret, S. et al. Analysis by quantitative PCR of zygosity in genetically modified organisms Methods Mol. Biol., 597 (2010),pp. 277-285
|
[28] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[29] |
Wang, L., Shao, Y., Guan, Y. et al. Sci. Rep., 5 (2015),p. 17517
|
[30] |
Xiao, A., Wang, Z., Hu, Y. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish Nucleic Acids Res., 41 (2013),p. e141
|
[31] |
Yano, M., Kawao, N., Tamura, Y. et al. A novel factor, Tmem176b, induced by activin-like kinase 2 signal promotes the differentiation of myoblasts into osteoblasts Exp. Clin. Endocrinol. Diabetes, 122 (2014),pp. 7-14
|
[32] |
Yen, S.T., Zhang, M., Deng, J.M. et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes Dev. Biol., 393 (2014),pp. 3-9
|
[33] |
Zhang, L., Jia, R., Palange, N.J. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9 PLoS One, 10 (2015),p. e0120396
|
[34] |
Zuccolo, J., Bau, J., Childs, S.J. et al. Phylogenetic analysis of the MS4A and TMEM176 gene families PLoS One, 5 (2010),p. e9369
|