5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 8
Aug.  2016
Turn off MathJax
Article Contents

A repetitive DNA-directed program of chromosome packaging during mitosis

doi: 10.1016/j.jgg.2016.04.003
  • Received Date: 2016-01-12
  • Accepted Date: 2016-04-04
  • Rev Recd Date: 2016-03-26
  • Available Online: 2016-06-29
  • Publish Date: 2016-08-20
  • loading
  • [1]
    Adolph, K.W., Cheng, S.M., Laemmli, U.K. Role of nonhistone proteins in metaphase chromosome structure Cell, 12 (1977),pp. 805-816
    [2]
    Baldwin, G.S., Brooks, N.J., Robson, R.E. et al. DNA double helices recognize mutual sequence homology in a protein free environment J. Phys. Chem. B, 112 (2008),pp. 1060-1064
    [3]
    Belmont, A.S. Mitotic chromosome structure and condensation Curr. Opin. Cell Biol., 18 (2006),pp. 632-638
    [4]
    Beshnova, D.A., Cherstvy, A.G., Vainshtein, Y. et al. PLoS Comput. Biol., 10 (2014),p. e1003698
    [5]
    Bojanowski, K., Ingber, D.E. Ionic control of chromosome architecture in living and permeabilized cells Exp. Cell Res., 244 (1998),p. 286
    [6]
    Cameron, I.L., Smith, N.K., Pool, T.B. Element concentration changes in mitotically active and postmitotic enterocytes. An x-ray microanalysis study J. Cell Biol., 80 (1979),pp. 444-450
    [7]
    Cherstvy, A.G., Kornyshev, A.A., Leikin, S. Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations J. Phys. Chem. B, 106 (2002),p. 13362
    [8]
    Cherstvy, A.G., Teif, V.B. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging J. Biol. Phys., 39 (2013),pp. 363-385
    [9]
    Cherstvy, A.G., Teif, V.B. Electrostatic effect of H1-histone protein binding on nucleosome repeat length Phys. Biol., 11 (2014),p. 044001
    [10]
    Cole, A. Chromosome structure Theor. Biophys., 1 (1967),pp. 305-375
    [11]
    Cournac, A., Koszul, R., Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements Nucleic Acids Res., 44 (2016),pp. 245-255
    [12]
    Cremer, T., Cremer, M. Chromosome territories Cold Spring Harb. Perspect. Biol., 2 (2010),p. a003889
    [13]
    Danilowicz, C., Lee, C.H., Kim, K. et al. Single molecule detection of direct, homologous, DNA/DNA pairing Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 19824-19829
    [14]
    de Frutos, M., Raspaud, E., Leforestier, A. et al. Aggregation of nucleosomes by divalent cations Biophys. J., 81 (2001),p. 1127
    [15]
    Dehghani, H., Dellaire, G., Bazett-Jones, D.P. Organization of chromatin in the interphase mammalian cell Micron, 36 (2005),p. 95
    [16]
    Hirano, T. At the heart of the chromosome: SMC proteins in action Nat. Rev. Mol. Cell Biol., 7 (2006),p. 311
    [17]
    Hirano, T., Mitchison, T.J. J. Cell Biol., 120 (1993),pp. 601-612
    [18]
    Horvath, P., Hörz, W. The compaction of mouse heterochromatin as studied by nuclease digestion FEBS Lett., 134 (1981),pp. 25-28
    [19]
    Hudson, D.F., Vagnarelli, P., Gassmann, R. et al. Condensin Is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes Dev. Cell, 5 (2003),p. 323
    [20]
    Inoue, S., Sugiyama, S., Travers, A.A. et al. Self-assembly of double-stranded DNA molecules at nanomolar concentrations Biochemistry, 46 (2007),p. 164
    [21]
    Jerzmanowski, A., Staron, K. J. Theor. Biol., 82 (1980),pp. 41-46
    [22]
    Kendall, M.D., Warley, A., Morris, I.W. Differences inapparent elemtal composition of tissues and cells using a fully quantitative X-ray microanalysis system J. Micros., 138 (1985),pp. 35-42
    [23]
    Kimura, K., Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation Cell, 90 (1997),p. 625
    [24]
    Kimura, K., Rybenkov, V.V., Crisona, N.J. et al. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation Cell, 98 (1999),p. 239
    [25]
    Kireeva, N., Lakonishok, M., Kireev, I. et al. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure J. Cell Biol., 166 (2004),pp. 775-785
    [26]
    König, P., Braunfeld, M., Sedat, J. et al. Chromosoma, 116 (2007),pp. 349-372
    [27]
    Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA Science, 184 (1974),pp. 868-871
    [28]
    Loukin, S., Kung, C. Manganese effectively supports yeast cell-cycle progression in place of calcium J. Cell Biol., 131 (1995),pp. 1025-1037
    [29]
    Lu, X., Klonoski, J.M., Resch, M.G. et al. Biochem. Cell Biol., 84 (2006),pp. 411-417
    [30]
    Maeshima, K., Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly Dev. Cell, 4 (2003),p. 467
    [31]
    Marko, J.F. Micromechanical studies of mitotic chromosomes Chromosome Res., 16 (2008),pp. 469-497
    [32]
    Meldolesi, J., Pozzan, T. Trends biochem. Sci., 23 (1998),p. 10
    [33]
    Nishikawa, J.-i., Ohyama, T. Selective association between nucleosomes with identical DNA sequences Nucleic Acids Res., 41 (2013),pp. 1544-1554
    [34]
    Paulson, J.R., Laemmli, U.K. The structure of histone-depleted metaphase chromosomes Cell, 12 (1977),pp. 817-828
    [35]
    Poirier, M.G., Marko, J.F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 15393-15397
    [36]
    Raspaud, E., Chaperon, I., Leforestier, A. et al. Spermine-induced aggregation of DNA, nucleosome, and chromatin Biophys. J., 77 (1999),p. 1547
    [37]
    Smoyer, C.J., Jaspersen, S.L. Breaking down the wall: the nuclear envelope during mitosis Curr. Opin. Cell Biol., 26 (2014),pp. 1-9
    [38]
    Strick, R., Strissel, P.L., Gavrilov, K. et al. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes J. Cell Biol., 155 (2001),pp. 899-910
    [39]
    Swedlow, J.R., Hirano, T. The making of the mitotic chromosome: modern insights into classical questions Mol. Cell, 11 (2003),pp. 557-569
    [40]
    Tang, S.J. Chromatin organization by repetitive elements (CORE): a genomic principle for the higher-order structure of chromosomes Genes, 2 (2011),pp. 502-515
    [41]
    Tang, S.-J. A model of DNA repeat-assembled mitotic chromosomal skeleton Genes, 2 (2011),pp. 661-670
    [42]
    Tang, S.-J. A model of repetitive-DNA-organized chromatin network of interphase chromosomes Genes, 3 (2012),pp. 167-175
    [43]
    Teif, V.B., Bohinc, K. Condensed DNA: condensing the concepts Prog. Biophys. Mol. Biol., 105 (2011),p. 208
    [44]
    Wroblewski, J., Roomans, G.M., Madsen, K. et al. X-ray microanalysis of cultured chondrocytes Scan. Electron Microsc., 2 (1983),pp. 777-784
    [45]
    Zhang, X.Y., Horz, W. Analysis of highly purified satellite DNA containing chromatin from the mouse Nucleic Acids Res., 10 (1982),pp. 1481-1494
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (67) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return