[1] |
Adolph, K.W., Cheng, S.M., Laemmli, U.K. Role of nonhistone proteins in metaphase chromosome structure Cell, 12 (1977),pp. 805-816
|
[2] |
Baldwin, G.S., Brooks, N.J., Robson, R.E. et al. DNA double helices recognize mutual sequence homology in a protein free environment J. Phys. Chem. B, 112 (2008),pp. 1060-1064
|
[3] |
Belmont, A.S. Mitotic chromosome structure and condensation Curr. Opin. Cell Biol., 18 (2006),pp. 632-638
|
[4] |
Beshnova, D.A., Cherstvy, A.G., Vainshtein, Y. et al. PLoS Comput. Biol., 10 (2014),p. e1003698
|
[5] |
Bojanowski, K., Ingber, D.E. Ionic control of chromosome architecture in living and permeabilized cells Exp. Cell Res., 244 (1998),p. 286
|
[6] |
Cameron, I.L., Smith, N.K., Pool, T.B. Element concentration changes in mitotically active and postmitotic enterocytes. An x-ray microanalysis study J. Cell Biol., 80 (1979),pp. 444-450
|
[7] |
Cherstvy, A.G., Kornyshev, A.A., Leikin, S. Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations J. Phys. Chem. B, 106 (2002),p. 13362
|
[8] |
Cherstvy, A.G., Teif, V.B. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging J. Biol. Phys., 39 (2013),pp. 363-385
|
[9] |
Cherstvy, A.G., Teif, V.B. Electrostatic effect of H1-histone protein binding on nucleosome repeat length Phys. Biol., 11 (2014),p. 044001
|
[10] |
Cole, A. Chromosome structure Theor. Biophys., 1 (1967),pp. 305-375
|
[11] |
Cournac, A., Koszul, R., Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements Nucleic Acids Res., 44 (2016),pp. 245-255
|
[12] |
Cremer, T., Cremer, M. Chromosome territories Cold Spring Harb. Perspect. Biol., 2 (2010),p. a003889
|
[13] |
Danilowicz, C., Lee, C.H., Kim, K. et al. Single molecule detection of direct, homologous, DNA/DNA pairing Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 19824-19829
|
[14] |
de Frutos, M., Raspaud, E., Leforestier, A. et al. Aggregation of nucleosomes by divalent cations Biophys. J., 81 (2001),p. 1127
|
[15] |
Dehghani, H., Dellaire, G., Bazett-Jones, D.P. Organization of chromatin in the interphase mammalian cell Micron, 36 (2005),p. 95
|
[16] |
Hirano, T. At the heart of the chromosome: SMC proteins in action Nat. Rev. Mol. Cell Biol., 7 (2006),p. 311
|
[17] |
Hirano, T., Mitchison, T.J. J. Cell Biol., 120 (1993),pp. 601-612
|
[18] |
Horvath, P., Hörz, W. The compaction of mouse heterochromatin as studied by nuclease digestion FEBS Lett., 134 (1981),pp. 25-28
|
[19] |
Hudson, D.F., Vagnarelli, P., Gassmann, R. et al. Condensin Is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes Dev. Cell, 5 (2003),p. 323
|
[20] |
Inoue, S., Sugiyama, S., Travers, A.A. et al. Self-assembly of double-stranded DNA molecules at nanomolar concentrations Biochemistry, 46 (2007),p. 164
|
[21] |
Jerzmanowski, A., Staron, K. J. Theor. Biol., 82 (1980),pp. 41-46
|
[22] |
Kendall, M.D., Warley, A., Morris, I.W. Differences inapparent elemtal composition of tissues and cells using a fully quantitative X-ray microanalysis system J. Micros., 138 (1985),pp. 35-42
|
[23] |
Kimura, K., Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation Cell, 90 (1997),p. 625
|
[24] |
Kimura, K., Rybenkov, V.V., Crisona, N.J. et al. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation Cell, 98 (1999),p. 239
|
[25] |
Kireeva, N., Lakonishok, M., Kireev, I. et al. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure J. Cell Biol., 166 (2004),pp. 775-785
|
[26] |
König, P., Braunfeld, M., Sedat, J. et al. Chromosoma, 116 (2007),pp. 349-372
|
[27] |
Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA Science, 184 (1974),pp. 868-871
|
[28] |
Loukin, S., Kung, C. Manganese effectively supports yeast cell-cycle progression in place of calcium J. Cell Biol., 131 (1995),pp. 1025-1037
|
[29] |
Lu, X., Klonoski, J.M., Resch, M.G. et al. Biochem. Cell Biol., 84 (2006),pp. 411-417
|
[30] |
Maeshima, K., Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly Dev. Cell, 4 (2003),p. 467
|
[31] |
Marko, J.F. Micromechanical studies of mitotic chromosomes Chromosome Res., 16 (2008),pp. 469-497
|
[32] |
Meldolesi, J., Pozzan, T. Trends biochem. Sci., 23 (1998),p. 10
|
[33] |
Nishikawa, J.-i., Ohyama, T. Selective association between nucleosomes with identical DNA sequences Nucleic Acids Res., 41 (2013),pp. 1544-1554
|
[34] |
Paulson, J.R., Laemmli, U.K. The structure of histone-depleted metaphase chromosomes Cell, 12 (1977),pp. 817-828
|
[35] |
Poirier, M.G., Marko, J.F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 15393-15397
|
[36] |
Raspaud, E., Chaperon, I., Leforestier, A. et al. Spermine-induced aggregation of DNA, nucleosome, and chromatin Biophys. J., 77 (1999),p. 1547
|
[37] |
Smoyer, C.J., Jaspersen, S.L. Breaking down the wall: the nuclear envelope during mitosis Curr. Opin. Cell Biol., 26 (2014),pp. 1-9
|
[38] |
Strick, R., Strissel, P.L., Gavrilov, K. et al. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes J. Cell Biol., 155 (2001),pp. 899-910
|
[39] |
Swedlow, J.R., Hirano, T. The making of the mitotic chromosome: modern insights into classical questions Mol. Cell, 11 (2003),pp. 557-569
|
[40] |
Tang, S.J. Chromatin organization by repetitive elements (CORE): a genomic principle for the higher-order structure of chromosomes Genes, 2 (2011),pp. 502-515
|
[41] |
Tang, S.-J. A model of DNA repeat-assembled mitotic chromosomal skeleton Genes, 2 (2011),pp. 661-670
|
[42] |
Tang, S.-J. A model of repetitive-DNA-organized chromatin network of interphase chromosomes Genes, 3 (2012),pp. 167-175
|
[43] |
Teif, V.B., Bohinc, K. Condensed DNA: condensing the concepts Prog. Biophys. Mol. Biol., 105 (2011),p. 208
|
[44] |
Wroblewski, J., Roomans, G.M., Madsen, K. et al. X-ray microanalysis of cultured chondrocytes Scan. Electron Microsc., 2 (1983),pp. 777-784
|
[45] |
Zhang, X.Y., Horz, W. Analysis of highly purified satellite DNA containing chromatin from the mouse Nucleic Acids Res., 10 (1982),pp. 1481-1494
|