 
	                | [1] | Adolph, K.W., Cheng, S.M., Laemmli, U.K. Role of nonhistone proteins in metaphase chromosome structure Cell, 12 (1977),pp. 805-816 | 
| [2] | Baldwin, G.S., Brooks, N.J., Robson, R.E. et al. DNA double helices recognize mutual sequence homology in a protein free environment J. Phys. Chem. B, 112 (2008),pp. 1060-1064 | 
| [3] | Belmont, A.S. Mitotic chromosome structure and condensation Curr. Opin. Cell Biol., 18 (2006),pp. 632-638 | 
| [4] | Beshnova, D.A., Cherstvy, A.G., Vainshtein, Y. et al. PLoS Comput. Biol., 10 (2014),p. e1003698 | 
| [5] | Bojanowski, K., Ingber, D.E. Ionic control of chromosome architecture in living and permeabilized cells Exp. Cell Res., 244 (1998),p. 286 | 
| [6] | Cameron, I.L., Smith, N.K., Pool, T.B. Element concentration changes in mitotically active and postmitotic enterocytes. An x-ray microanalysis study J. Cell Biol., 80 (1979),pp. 444-450 | 
| [7] | Cherstvy, A.G., Kornyshev, A.A., Leikin, S. Temperature-dependent DNA condensation triggered by rearrangement of adsorbed cations J. Phys. Chem. B, 106 (2002),p. 13362 | 
| [8] | Cherstvy, A.G., Teif, V.B. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging J. Biol. Phys., 39 (2013),pp. 363-385 | 
| [9] | Cherstvy, A.G., Teif, V.B. Electrostatic effect of H1-histone protein binding on nucleosome repeat length Phys. Biol., 11 (2014),p. 044001 | 
| [10] | Cole, A. Chromosome structure Theor. Biophys., 1 (1967),pp. 305-375 | 
| [11] | Cournac, A., Koszul, R., Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements Nucleic Acids Res., 44 (2016),pp. 245-255 | 
| [12] | Cremer, T., Cremer, M. Chromosome territories Cold Spring Harb. Perspect. Biol., 2 (2010),p. a003889 | 
| [13] | Danilowicz, C., Lee, C.H., Kim, K. et al. Single molecule detection of direct, homologous, DNA/DNA pairing Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 19824-19829 | 
| [14] | de Frutos, M., Raspaud, E., Leforestier, A. et al. Aggregation of nucleosomes by divalent cations Biophys. J., 81 (2001),p. 1127 | 
| [15] | Dehghani, H., Dellaire, G., Bazett-Jones, D.P. Organization of chromatin in the interphase mammalian cell Micron, 36 (2005),p. 95 | 
| [16] | Hirano, T. At the heart of the chromosome: SMC proteins in action Nat. Rev. Mol. Cell Biol., 7 (2006),p. 311 | 
| [17] | Hirano, T., Mitchison, T.J. J. Cell Biol., 120 (1993),pp. 601-612 | 
| [18] | Horvath, P., Hörz, W. The compaction of mouse heterochromatin as studied by nuclease digestion FEBS Lett., 134 (1981),pp. 25-28 | 
| [19] | Hudson, D.F., Vagnarelli, P., Gassmann, R. et al. Condensin Is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes Dev. Cell, 5 (2003),p. 323 | 
| [20] | Inoue, S., Sugiyama, S., Travers, A.A. et al. Self-assembly of double-stranded DNA molecules at nanomolar concentrations Biochemistry, 46 (2007),p. 164 | 
| [21] | Jerzmanowski, A., Staron, K. J. Theor. Biol., 82 (1980),pp. 41-46 | 
| [22] | Kendall, M.D., Warley, A., Morris, I.W. Differences inapparent elemtal composition of tissues and cells using a fully quantitative X-ray microanalysis system J. Micros., 138 (1985),pp. 35-42 | 
| [23] | Kimura, K., Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation Cell, 90 (1997),p. 625 | 
| [24] | Kimura, K., Rybenkov, V.V., Crisona, N.J. et al. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation Cell, 98 (1999),p. 239 | 
| [25] | Kireeva, N., Lakonishok, M., Kireev, I. et al. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure J. Cell Biol., 166 (2004),pp. 775-785 | 
| [26] | König, P., Braunfeld, M., Sedat, J. et al. Chromosoma, 116 (2007),pp. 349-372 | 
| [27] | Kornberg, R.D. Chromatin structure: a repeating unit of histones and DNA Science, 184 (1974),pp. 868-871 | 
| [28] | Loukin, S., Kung, C. Manganese effectively supports yeast cell-cycle progression in place of calcium J. Cell Biol., 131 (1995),pp. 1025-1037 | 
| [29] | Lu, X., Klonoski, J.M., Resch, M.G. et al. Biochem. Cell Biol., 84 (2006),pp. 411-417 | 
| [30] | Maeshima, K., Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly Dev. Cell, 4 (2003),p. 467 | 
| [31] | Marko, J.F. Micromechanical studies of mitotic chromosomes Chromosome Res., 16 (2008),pp. 469-497 | 
| [32] | Meldolesi, J., Pozzan, T. Trends biochem. Sci., 23 (1998),p. 10 | 
| [33] | Nishikawa, J.-i., Ohyama, T. Selective association between nucleosomes with identical DNA sequences Nucleic Acids Res., 41 (2013),pp. 1544-1554 | 
| [34] | Paulson, J.R., Laemmli, U.K. The structure of histone-depleted metaphase chromosomes Cell, 12 (1977),pp. 817-828 | 
| [35] | Poirier, M.G., Marko, J.F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold Proc. Nat. Acad. Sci. U. S. A., 99 (2002),pp. 15393-15397 | 
| [36] | Raspaud, E., Chaperon, I., Leforestier, A. et al. Spermine-induced aggregation of DNA, nucleosome, and chromatin Biophys. J., 77 (1999),p. 1547 | 
| [37] | Smoyer, C.J., Jaspersen, S.L. Breaking down the wall: the nuclear envelope during mitosis Curr. Opin. Cell Biol., 26 (2014),pp. 1-9 | 
| [38] | Strick, R., Strissel, P.L., Gavrilov, K. et al. Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes J. Cell Biol., 155 (2001),pp. 899-910 | 
| [39] | Swedlow, J.R., Hirano, T. The making of the mitotic chromosome: modern insights into classical questions Mol. Cell, 11 (2003),pp. 557-569 | 
| [40] | Tang, S.J. Chromatin organization by repetitive elements (CORE): a genomic principle for the higher-order structure of chromosomes Genes, 2 (2011),pp. 502-515 | 
| [41] | Tang, S.-J. A model of DNA repeat-assembled mitotic chromosomal skeleton Genes, 2 (2011),pp. 661-670 | 
| [42] | Tang, S.-J. A model of repetitive-DNA-organized chromatin network of interphase chromosomes Genes, 3 (2012),pp. 167-175 | 
| [43] | Teif, V.B., Bohinc, K. Condensed DNA: condensing the concepts Prog. Biophys. Mol. Biol., 105 (2011),p. 208 | 
| [44] | Wroblewski, J., Roomans, G.M., Madsen, K. et al. X-ray microanalysis of cultured chondrocytes Scan. Electron Microsc., 2 (1983),pp. 777-784 | 
| [45] | Zhang, X.Y., Horz, W. Analysis of highly purified satellite DNA containing chromatin from the mouse Nucleic Acids Res., 10 (1982),pp. 1481-1494 | 
