[1] |
Annunen, S., Korkko, J., Czarny, M. et al. Am. J. Hum. Genet., 65 (1999),pp. 974-983
|
[2] |
Du, M., Auer, P.L., Jiao, S. et al. Whole-exome imputation of sequence variants identified two novel alleles associated with adult body height in African Americans Hum. Mol. Genet., 23 (2014),pp. 6607-6615
|
[3] |
Hao, Y., Liu, X., Lu, X. et al. Genome-wide association study in Han Chinese identifies three novel loci for human height Hum. Genet., 132 (2013),pp. 681-689
|
[4] |
Keene, D.R., Oxford, J.T., Morris, N.P. Ultrastructural localization of collagen types II, IX, and XI in the growth plate of human rib and fetal bovine epiphyseal cartilage: type XI collagen is restricted to thin fibrils J. Histochem. Cytochem, 43 (1995),pp. 967-979
|
[5] |
Kimura, T., Kobayashi, T., Munkhbat, B. et al. Genome-wide association analysis with selective genotyping identifies candidate loci for adult height at 8q21.13 and 15q22.33-q23 in Mongolians Hum. Genet., 123 (2008),pp. 655-660
|
[6] |
Lango Allen, H., Estrada, K., Lettre, G. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height Nature, 467 (2010),pp. 832-838
|
[7] |
Lanktree, M.B., Guo, Y., Murtaza, M. et al. Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height Am. J. Hum. Genet., 88 (2011),pp. 6-18
|
[8] |
Li, Y., Lacerda, D.A., Warman, M.L. et al. Cell, 80 (1995),pp. 423-430
|
[9] |
Liu, J.Z., Medland, S.E., Wright, M.J. et al. Genome-wide association study of height and body mass index in Australian twin families Twin Res. Hum. Genet., 13 (2010),pp. 179-193
|
[10] |
Macgregor, S., Cornes, B.K., Martin, N.G. et al. Bias, precision and heritability of self-reported and clinically measured height in Australian twins Hum. Genet., 120 (2006),pp. 571-580
|
[11] |
Perola, M. Genome-wide association approaches for identifying loci for human height genes Best Pract. Res. Clin. Endocrinol. Metab., 25 (2011),pp. 19-23
|
[12] |
Raine, E.V., Dodd, A.W., Reynard, L.N. et al. BMC Musculoskelet. Disord., 14 (2013),pp. 1471-2474
|
[13] |
Richards, A.J., McNinch, A., Whittaker, J. et al. Eur. J. Hum. Genet., 20 (2012),pp. 552-558
|
[14] |
Sanna, S., Jackson, A.U., Nagaraja, R. et al. Common variants in the GDF5-UQCC region are associated with variation in human height Nat. Genet., 40 (2008),pp. 198-203
|
[15] |
Snead, M.P., Yates, J.R. Clinical and molecular genetics of Stickler syndrome J. Med. Genet., 36 (1999),pp. 353-359
|
[16] |
Tang, H., Jin, X., Li, Y. et al. A large-scale screen for coding variants predisposing to psoriasis Nat. Genet., 46 (2014),pp. 45-50
|
[17] |
Tetens, J., Widmann, P., Kuhn, C. et al. Anim. Genet., 44 (2013),pp. 467-471
|
[18] |
Weedon, M.N., Frayling, T.M. Reaching new heights: insights into the genetics of human stature Trends Genet., 24 (2008),pp. 595-603
|
[19] |
Weedon, M.N., Lettre, G., Freathy, R.M. et al. Nat. Genet., 39 (2007),pp. 1245-1250
|
[20] |
Wood, A.R., Esko, T., Yang, J. et al. Defining the role of common variation in the genomic and biological architecture of adult human height Nat. Genet., 46 (2014),pp. 1173-1186
|