5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 9
Sep.  2016
Turn off MathJax
Article Contents

Clinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophy

doi: 10.1016/j.jgg.2016.03.011
More Information
  • Corresponding author: E-mail address: jie.qiao@263.net (Jie Qiao); E-mail address: yanliyingkind@aliyun.com (Liying Yan)
  • Received Date: 2016-03-02
  • Accepted Date: 2016-03-14
  • Rev Recd Date: 2016-03-11
  • Available Online: 2016-05-18
  • Publish Date: 2016-09-20
  • Conventional PCR methods combined with linkage analysis based on short tandem repeats (STRs) or Karyomapping with single nucleotide polymorphism (SNP) arrays, have been applied to preimplantation genetic diagnosis (PGD) for spinal muscular atrophy (SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wild-type embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing (NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion (carriers) from the wild-type (normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos (homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation.
  • loading
  • [1]
    Altarescu, G., Zeevi, D.A., Zeligson, S. et al. Familial haplotyping and embryo analysis for preimplantation genetic diagnosis (PGD) using DNA microarrays: a proof of principle study J. Assist. Reprod. Genet., 30 (2013),pp. 1595-1603
    [2]
    Brezina, P.R., Benner, A., Rechitsky, S. et al. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome Fertil. Steril., 95 (2011)
    [3]
    Brezina, P.R., Kutteh, W.H. Clinical applications of preimplantation genetic testing BMJ, 350 (2015),p. g7611
    [4]
    Burlet, P., Frydman, N., Gigarel, N. et al. Improved single-cell protocol for preimplantation genetic diagnosis of spinal muscular atrophy Fertil. Steril., 84 (2005),pp. 734-739
    [5]
    Dahdouh, E.M., Balayla, J., Audibert, F. et al. Technical update: preimplantation genetic diagnosis and screening J. Obstet. Gynaecol. Can., 37 (2015),pp. 451-463
    [6]
    Dreesen, J., Destouni, A., Kourlaba, G. et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study Eur. J. Hum. Genet., 22 (2014),pp. 1012-1018
    [7]
    Dreesen, J.C., Bras, M., de Die-Smulders, C. et al. Preimplantation genetic diagnosis of spinal muscular atrophy Mol. Hum. Reprod., 4 (1998),pp. 881-885
    [8]
    Fan, J., Wang, L., Wang, H. et al. The clinical utility of next-generation sequencing for identifying chromosome disease syndromes in human embryos Reprod. Biomed. Online, 31 (2015),pp. 62-70
    [9]
    Girardet, A., Fernandez, C., Claustres, M. Efficient strategies for preimplantation genetic diagnosis of spinal muscular atrophy Fertil. Steril., 90 (2008)
    [10]
    Handyside, A.H. PGD and aneuploidy screening for 24 chromosomes by genome-wide SNP analysis: seeing the wood and the trees Reprod. Biomed. Online, 23 (2011),pp. 686-691
    [11]
    Handyside, A.H. 24-chromosome copy number analysis: a comparison of available technologies Fertil. Steril., 100 (2013),pp. 595-602
    [12]
    Handyside, A.H., Harton, G.L., Mariani, B. et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes J. Med. Genet., 47 (2010),pp. 651-658
    [13]
    Handyside, A.H., Kontogianni, E.H., Hardy, K. et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification Nature, 344 (1990),pp. 768-770
    [14]
    Hou, Y., Fan, W., Yan, L. et al. Genome analyses of single human oocytes Cell, 155 (2013),pp. 1492-1506
    [15]
    Jones, C.A., Kolomietz, E., Maire, G. et al. PGD for a carrier of an intrachromosomal insertion using aCGH Syst. Biol. Reprod. Med., 60 (2014),pp. 377-382
    [16]
    Katz, M.G., Fitzgerald, L., Bankier, A. et al. Issues and concerns of couples presenting for preimplantation genetic diagnosis (PGD) Prenat. Diagn., 22 (2002),pp. 1117-1122
    [17]
    Konstantinidis, M., Prates, R., Goodall, N.N. et al. Live births following Karyomapping of human blastocysts: experience from clinical application of the method Reprod. Biomed. Online, 31 (2015),pp. 394-403
    [18]
    Korzebor, A., Derakhshandeh-Peykar, P., Meshkani, M. et al. Heterozygosity assessment of five STR loci located at 5q13 region for preimplantation genetic diagnosis of spinal muscular atrophy Mol. Biol. Rep., 40 (2013),pp. 67-72
    [19]
    Lefebvre, S., Burglen, L., Reboullet, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene Cell, 80 (1995),pp. 155-165
    [20]
    Lukaszuk, K., Pukszta, S., Ochman, K. et al. Healthy baby born to a robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: a case report AJP Rep., 5 (2015),pp. e172-e175
    [21]
    Lukaszuk, K., Pukszta, S., Wells, D. et al. Fertil. Steril., 103 (2015),pp. 1031-1036
    [22]
    Lunn, M.R., Wang, C.H. Spinal muscular atrophy Lancet, 371 (2008),pp. 2120-2133
    [23]
    Markowitz, J.A., Singh, P., Darras, B.T. Spinal muscular atrophy: a clinical and research update Pediatr. Neurol., 46 (2012),pp. 1-12
    [24]
    Monani, U.R., Lorson, C.L., Parsons, D.W. et al. Hum. Mol. Genet., 8 (1999),pp. 1177-1183
    [25]
    Moutou, C., Gardes, N., Rongieres, C. et al. Allele-specific amplification for preimplantation genetic diagnosis (PGD) of spinal muscular atrophy Prenat. Diagn., 21 (2001),pp. 498-503
    [26]
    Moutou, C., Gardes, N., Viville, S. Duplex PCR for preimplantation genetic diagnosis (PGD) of spinal muscular atrophy Prenat. Diagn., 23 (2003),pp. 685-689
    [27]
    Natesan, S.A., Handyside, A.H., Thornhill, A.R. et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders Reprod. Biomed. Online, 29 (2014),pp. 600-605
    [28]
    Prior, T.W. Spinal muscular atrophy: a time for screening Curr. Opin. Pediatr., 22 (2010),pp. 696-702
    [29]
    Qu, Y.J., Song, F., Yang, Y.L. et al. Compound heterozygous mutation in two unrelated cases of Chinese spinal muscular atrophy patients Chin. Med. J. (Engl), 124 (2011),pp. 385-389
    [30]
    Renwick, P., Ogilvie, C.M. Preimplantation genetic diagnosis for monogenic diseases: overview and emerging issues Expert Rev. Mol. Diagn., 7 (2007),pp. 33-43
    [31]
    Shen, X.T., Xu, Y.W., Zhong, Y.P. et al. Combination of multiple displacement amplification with short tandem repeat polymorphismin preimplantation genetic diagnosis Beijing Da Xue Xue Bao, 45 (2013),pp. 852-858
    [32]
    Tan, Y., Yin, X., Zhang, S. et al. Clinical outcome of preimplantation genetic diagnosis and screening using next generation sequencing Gigascience, 3 (2014),p. 30
    [33]
    Tan, Y.Q., Tan, K., Zhang, S.P. et al. Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers Hum. Reprod., 28 (2013),pp. 2581-2592
    [34]
    Treff, N.R., Fedick, A., Tao, X. et al. Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease Fertil. Steril., 99 (2013)
    [35]
    Tur-Kaspa, I., Jeelani, R., Doraiswamy, P.M. Preimplantation genetic diagnosis for inherited neurological disorders Nat. Rev. Neurol., 10 (2014),pp. 417-424
    [36]
    Wilton, L., Thornhill, A., Traeger-Synodinos, J. et al. The causes of misdiagnosis and adverse outcomes in PGD Hum. Reprod., 24 (2009),pp. 1221-1228
    [37]
    Wirth, B. Hum. Mutat., 15 (2000),pp. 228-237
    [38]
    Yan, L., Huang, L., Xu, L. et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses Proc. Natl. Acad. Sci. U. S. A., 112 (2015),pp. 15964-15969
    [39]
    Zimmerman, R.S., Jalas, C., Tao, X. et al. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification Fertil. Steril., 105 (2016),pp. 286-294
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return