5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 6
Jun.  2016
Turn off MathJax
Article Contents

Filamentation of Metabolic Enzymes in Saccharomyces cerevisiae

doi: 10.1016/j.jgg.2016.03.008
More Information
  • Corresponding author: E-mail address: jilong.liu@dpag.ox.ac.uk (Ji-Long Liu)
  • Received Date: 2016-02-09
  • Accepted Date: 2016-03-28
  • Rev Recd Date: 2016-03-09
  • Available Online: 2016-04-01
  • Publish Date: 2016-06-20
  • Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Allen, C., Buttner, S., Aragon, A.D. et al. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures J. Cell Biol., 174 (2006),pp. 89-100
    [2]
    An, S., Kumar, R., Sheets, E.D. et al. Science, 320 (2008),pp. 103-106
    [3]
    Aslanian, A.M., Fletcher, B.S., Kilberg, M.S. Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells Biochem. J., 357 (2001),pp. 321-328
    [4]
    Aughey, G.N., Grice, S.J., Shen, Q.J. et al. Nucleotide synthesis is regulated by cytoophidium formation during neurodevelopment and adaptive metabolism Biol. Open, 3 (2014),pp. 1045-1056
    [5]
    Aughey, G.N., Tastan, Ö.Y., Liu, J.L. Cellular serpents and dreaming spires: new frontiers in arginine and pyrimidine biology J. Genet. Genomics, 41 (2014),pp. 561-565
    [6]
    Azzam, G., Liu, J.L. PLoS Genet., 9 (2013)
    [7]
    Barry, R.M., Bitbol, A.F., Lorestani, A. et al. Large-scale filament formation inhibits the activity of CTP synthetase eLife, 3 (2014)
    [8]
    Brangwynne, C.P., Eckmann, C.R., Courson, D.S. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation Science, 324 (2009),pp. 1729-1732
    [9]
    Broach, J.R. Nutritional control of growth and development in yeast Genetics, 192 (2012),pp. 73-105
    [10]
    Campbell, S.G., Hoyle, N.P., Ashe, M.P. Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control J. Cell Biol., 170 (2005),pp. 925-934
    [11]
    Carcamo, W.C., Satoh, M., Kasahara, H. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells PLoS One, 6 (2011)
    [12]
    Chang, C.C., Lin, W.C., Pai, L.M. et al. Cytoophidium assembly reflects upregulation of IMPDH activity J. Cell Sci., 128 (2015),pp. 3550-3555
    [13]
    Chen, H., Pan, Y.X., Dudenhausen, E.E. et al. Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation J. Biol. Chem., 279 (2004),pp. 50829-50839
    [14]
    Chen, K., Zhang, J., Tastan, O.Y. et al. J. Genet. Genomics, 38 (2011),pp. 391-402
    [15]
    Dang, V.D., Valens, M., Bolotin-Fukuhara, M. et al. Mol. Microbiol., 22 (1996),pp. 681-692
    [16]
    Davidson, G.S., Joe, R.M., Roy, S. et al. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures Mol. Biol. Cell, 22 (2011),pp. 988-998
    [17]
    DeLuna, A., Avendano, A., Riego, L. et al. J. Biol. Chem., 276 (2001),pp. 43775-43783
    [18]
    Gall, J.G. Cajal bodies: the first 100 years Annu. Rev. Cell Dev. Biol., 16 (2000),pp. 273-300
    [19]
    Garavito, M.F., Narváez-Ortiz, H.Y., Zimmermann, B.H. Pyrimidine metabolism: dynamic and versatile pathways in pathogens and cellular development J. Genet. Genomics, 42 (2015),pp. 195-205
    [20]
    Gantt, J.S., Arfin, S.M. Elevated levels of asparagine synthetase activity in physiologically and genetically derepressed Chinese hamster ovary cells are due to increased rates of enzyme synthesis J. Biol. Chem., 256 (1981),pp. 7311-7315
    [21]
    Gou, K.M., Chang, C.C., Shen, Q.J. et al. CTP synthase forms cytoophidia in the cytoplasm and nucleus Exp. Cell Res., 323 (2014),pp. 242-253
    [22]
    Gunning, B.E. The fine structure of chloroplast stroma following aldehyde osmium-tetroxide fixation J. Cell Biol., 24 (1965),pp. 79-93
    [23]
    Herman, P.K. Stationary phase in yeast Curr. Opin. Microbiol., 5 (2002),pp. 602-607
    [24]
    Huh, W.K., Falvo, J.V., Gerke, L.C. et al. Global analysis of protein localization in budding yeast Nature, 425 (2003),pp. 686-691
    [25]
    Hyman, A.A., Weber, C.A., Julicher, F. Liquid-liquid phase separation in biology Annu. Rev. Cell Dev. Biol., 30 (2014),pp. 39-58
    [26]
    Ingerson-Mahar, M., Briegel, A., Werner, J.N. et al. The metabolic enzyme CTP synthase forms cytoskeletal filaments Nat. Cell Biol., 12 (2010),pp. 739-746
    [27]
    Kim, S.Y., Kim, Y.W., Hegerl, R. et al. Novel type of enzyme multimerization enhances substrate affinity of oat beta-glucosidase J. Struct. Biol., 150 (2005),pp. 1-10
    [28]
    Kleinschmidt, A.K., Moss, J., Lane, D.M. Acetyl coenzyme A carboxylase: filamentous nature of the animal enzymes Science, 166 (1969),pp. 1276-1278
    [29]
    Laplante, M., Sabatini, D.M. mTOR signaling at a glance J. Cell Sci., 122 (2009),pp. 3589-3594
    [30]
    Larsen, T.M., Boehlein, S.K., Schuster, S.M. et al. Biochemistry, 39 (2000),p. 7330
    [31]
    Li, H., Huang, Y., Wang, P.Y. et al.
    [32]
    Liu, J.L. J. Genet. Genomics, 37 (2010),pp. 281-296
    [33]
    Liu, J.L., Buszczak, M., Gall, J.G. Chromosome Res., 14 (2006),pp. 465-475
    [34]
    Liu, J.L., Gall, J.G. U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11655-11659
    [35]
    Liu, J.L., Murphy, C., Buszczak, M. et al. J. Cell Biol., 172 (2006),pp. 875-884
    [36]
    Liu, J.L. May the force be with you: metabolism of arginine and pyrimidines J. Genet. Genomics, 42 (2015),pp. 179-180
    [37]
    Meredith, M.J., Lane, M.D. Acetyl-CoA carboxylase. Evidence for polymeric filament to protomer transition in the intact avian liver cell J. Biol. Chem., 253 (1978),pp. 3381-3383
    [38]
    Mouilleron, S., Golinelli-Pimpaneau, B. Conformational changes in ammonia-channeling glutamine amidotransferases Curr. Opin. Struct. Biol., 17 (2007),pp. 653-664
    [39]
    Noree, C., Monfort, E., Shiau, A.K. et al. Common regulatory control of CTP synthase enzyme activity and filament formation Mol. Biol. Cell, 25 (2014),pp. 2282-2290
    [40]
    Noree, C., Sato, B.K., Broyer, R.M. et al. J. Cell Biol., 190 (2010),pp. 541-551
    [41]
    O'Connell, J.D., Zhao, A., Ellington, A.D. et al. Dynamic reorganization of metabolic enzymes into intracellular bodies Annu. Rev. Cell Dev. Biol., 28 (2012),pp. 89-111
    [42]
    Panosyan, E.H., Wang, Y., Xia, P. et al. Asparagine depletion potentiates the cytotoxic effect of chemotherapy against brain tumors Mol. Cancer Res., 12 (2014),pp. 694-702
    [43]
    Petrovska, I., Nuske, E., Munder, M.C. et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation eLife, 3 (2014)
    [44]
    Saxton, M.J., Jacobson, K. Single-particle tracking: applications to membrane dynamics Annu. Rev. Biophys. Biomol. Struct., 26 (1997),pp. 373-399
    [45]
    Sbalzarini, I.F., Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology J. Struct. Biol., 151 (2005),pp. 182-195
    [46]
    Schwock, J., Kirchberger, J., Edelmann, A. et al. Yeast, 21 (2004),pp. 483-494
    [47]
    Sheth, U., Parker, R. Targeting of aberrant mRNAs to cytoplasmic processing bodies Cell, 125 (2006),pp. 1095-1109
    [48]
    Sircar, K., Huang, H., Hu, L. et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer Am. J. Pathol., 180 (2012),pp. 895-903
    [49]
    Stahl, G., Salem, S.N., Chen, L. et al. Eukaryot. Cell, 3 (2004),pp. 331-338
    [50]
    Strochlic, T.I., Stavrides, K.P., Thomas, S.V. et al. EMBO Rep., 15 (2014),pp. 1184-1191
    [51]
    Suresh, H.G., da Silveira Dos Santos, A.X., Kukulski, W. et al. Mol. Biol. Cell, 26 (2015),pp. 1601-1615
    [52]
    Szklarczyk, D., Franceschini, A., Wyder, S. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life Nucleic Acids Res., 43 (2015),pp. D447-D452
    [53]
    Tastan, Ö.Y., Liu, J.L. J. Genet. Genomics, 42 (2015),pp. 261-274
    [54]
    Tastan, Ö.Y., Liu, J.L. Methods Mol. Biol., 1328 (2015),pp. 179-189
    [55]
    Telford, J.N., Lad, P.M., Hammes, G.G. Electron microscope study of native and crosslinked rabbit muscle phosphofructokinase Proc. Natl. Acad. Sci. USA, 72 (1975),pp. 3054-3056
    [56]
    Wang, P.Y., Lin, W.C., Tsai, Y.C. et al. Genetics, 201 (2015),pp. 1511-1523
    [57]
    Zhang, J., Fan, J., Venneti, S. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion Mol. Cell, 56 (2014),pp. 205-218
    [58]
    Zhang, J., Hulme, L., Liu, J.L. Biol. Open, 3 (2014),pp. 1092-1097
    [59]
    Zhou, C., Slaughter, B.D., Unruh, J.R. et al. Motility and segregation of Hsp104-associated protein aggregates in budding yeast Cell, 147 (2011),pp. 1186-1196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads (4) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return