[1] |
Albertin, C.B., Simakov, O., Mitros, T. et al. The octopus genome and the evolution of cephalopod neural and morphological novelties Nature, 524 (2015),pp. 220-224
|
[2] |
Ali, T., Renkawitz, R., Bartkuhn, M. Insulators and domains of gene expression Curr. Opin. Genet. Dev., 37 (2016),pp. 17-26
|
[3] |
Alt, F.W., Zhang, Y., Meng, F.L. et al. Mechanisms of programmed DNA lesions and genomic instability in the immune system Cell, 152 (2013),pp. 417-429
|
[4] |
Andrey, G., Montavon, T., Mascrez, B. et al. Science, 340 (2013),p. 1234167
|
[5] |
Bétermier, M., Bertrand, P., Lopez, B.S. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet., 10 (2014),p. e1004086
|
[6] |
Badrinarayanan, A., Le, T.B., Laub, M.T. Bacterial chromosome organization and segregation Annu. Rev. Cell Dev. Biol., 31 (2015),pp. 171-199
|
[7] |
Banerji, J., Rusconi, S., Schaffner, W. Cell, 27 (1981),pp. 299-308
|
[8] |
Baniahmad, A., Steiner, C., Kohne, A.C. et al. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site Cell, 61 (1990),pp. 505-514
|
[9] |
Bell, A.C., Felsenfeld, G. Nature, 405 (2000),pp. 482-485
|
[10] |
Bell, A.C., West, A.G., Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators Cell, 98 (1999),pp. 387-396
|
[11] |
Bell, A.C., West, A.G., Felsenfeld, G. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome Science, 291 (2001),pp. 447-450
|
[12] |
Bulger, M., Groudine, M. Functional and mechanistic diversity of distal transcription enhancers Cell, 144 (2011),pp. 327-339
|
[13] |
Byrne, S.M., Ortiz, L., Mali, P. et al. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells Nucleic Acids Res., 43 (2015),p. e21
|
[14] |
Canver, M.C., Bauer, D.E., Dass, A. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells J. Biol. Chem., 289 (2014),pp. 21312-21324
|
[15] |
Canver, M.C., Smith, E.C., Sher, F. et al. Nature, 527 (2015),pp. 192-197
|
[16] |
Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
|
[17] |
Carroll, D. Genome engineering with targetable nucleases Annu. Rev. Biochem., 83 (2014),pp. 409-439
|
[18] |
Ceccaldi, R., Rondinelli, B., D'Andrea, A.D. Repair pathway choices and consequences at the double-strand break Trends Cell Biol., 26 (2016),pp. 52-64
|
[19] |
Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
|
[20] |
Chen, W.V., Alvarez, F.J., Lefebvre, J.L. et al. Functional significance of isoform diversification in the protocadherin gamma gene cluster Neuron, 75 (2012),pp. 402-409
|
[21] |
Chiruvella, K.K., Liang, Z., Wilson, T.E. Repair of double-strand breaks by end joining Cold Spring Harb. Perspect. Biol., 5 (2013),p. a012757
|
[22] |
Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
|
[23] |
Choi, P.S., Meyerson, M. Targeted genomic rearrangements using CRISPR/Cas technology Nat. Commun., 5 (2014),p. 3728
|
[24] |
Chong, J.A., Tapia-Ramirez, J., Kim, S. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons Cell, 80 (1995),pp. 949-957
|
[25] |
Chu, V.T., Weber, T., Wefers, B. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells Nat. Biotechnol., 33 (2015),pp. 543-548
|
[26] |
Chung, J.H., Whiteley, M., Felsenfeld, G. Cell, 74 (1993),pp. 505-514
|
[27] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[28] |
Cremer, T., Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells Nat. Rev. Genet., 2 (2001),pp. 292-301
|
[29] |
de Laat, W., Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes Nature, 502 (2013),pp. 499-506
|
[30] |
de Wit, E., Vos, E.S., Holwerda, S.J. et al. CTCF binding polarity determines chromatin looping Mol. Cell, 60 (2015),pp. 676-684
|
[31] |
Dekker, J., Rippe, K., Dekker, M. et al. Capturing chromosome conformation Science, 295 (2002),pp. 1306-1311
|
[32] |
Deng, W., Shi, X., Tjian, R. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 11870-11875
|
[33] |
Dixon, J.R., Jung, I., Selvaraj, S. et al. Chromatin architecture reorganization during stem cell differentiation Nature, 518 (2015),pp. 331-336
|
[34] |
Dixon, J.R., Selvaraj, S., Yue, F. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions Nature, 485 (2012),pp. 376-380
|
[35] |
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[36] |
Dowen, J.M., Fan, Z.P., Hnisz, D. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes Cell, 159 (2014),pp. 374-387
|
[37] |
Dzantiev, L., Constantin, N., Genschel, J. et al. A defined human system that supports bidirectional mismatch-provoked excision Mol. Cell, 15 (2004),pp. 31-41
|
[38] |
ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
|
[39] |
Ernst, J., Kheradpour, P., Mikkelsen, T.S. et al. Mapping and analysis of chromatin state dynamics in nine human cell types Nature, 473 (2011),pp. 43-49
|
[40] |
Esumi, S., Kakazu, N., Taguchi, Y. et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons Nat. Genet., 37 (2005),pp. 171-176
|
[41] |
Festenstein, R., Tolaini, M., Corbella, P. et al. Locus control region function and heterochromatin-induced position effect variegation Science, 271 (1996),pp. 1123-1125
|
[42] |
Filippova, G.N., Fagerlie, S., Klenova, E.M. et al. Mol. Cell. Biol., 16 (1996),pp. 2802-2813
|
[43] |
Flavahan, W.A., Drier, Y., Liau, B.B. et al. Nature, 529 (2016),pp. 110-114
|
[44] |
Fullwood, M.J., Liu, M.H., Pan, Y.F. et al. An oestrogen-receptor-alpha-bound human chromatin interactome Nature, 462 (2009),pp. 58-64
|
[45] |
Garrett, A.M., Schreiner, D., Lobas, M.A. et al. γ-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway Neuron, 74 (2012),pp. 269-276
|
[46] |
Gibcus, J.H., Dekker, J. The hierarchy of the 3D genome Mol. Cell, 49 (2013),pp. 773-782
|
[47] |
Golan-Mashiach, M., Grunspan, M., Emmanuel, R. et al. Identification of CTCF as a master regulator of the clustered protocadherin genes Nucleic Acids Res., 40 (2011),pp. 3378-3391
|
[48] |
Golic, K.G., Golic, M.M. Genetics, 144 (1996),pp. 1693-1711
|
[49] |
Gómez-Marín, C., Tena, J.J., Acemel, R.D. et al. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 7542-7547
|
[50] |
Guo, Y., Monahan, K., Wu, H. et al. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 21081-21086
|
[51] |
Guo, Y., Xu, Q., Canzio, D. et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function Cell, 162 (2015),pp. 900-910
|
[52] |
Gupta, A., Hall, V.L., Kok, F.O. et al. Targeted chromosomal deletions and inversions in zebrafish Genome Res., 23 (2013),pp. 1008-1017
|
[53] |
Handoko, L., Xu, H., Li, G. et al. CTCF-mediated functional chromatin interactome in pluripotent cells Nat. Genet., 43 (2011),pp. 630-638
|
[54] |
Hardison, R., Slightom, J.L., Gumucio, D.L. et al. Gene, 205 (1997),pp. 73-94
|
[55] |
Hardison, R.C. Variable evolutionary signatures at the heart of enhancers Nat. Genet., 42 (2010),pp. 734-735
|
[56] |
Hark, A.T., Schoenherr, C.J., Katz, D.J. et al. Nature, 405 (2000),pp. 486-489
|
[57] |
Heintzman, N.D., Stuart, R.K., Hon, G. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome Nat. Genet., 39 (2007),pp. 311-318
|
[58] |
Herault, Y., Rassoulzadegan, M., Cuzin, F. et al. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE) Nat. Genet., 20 (1998),pp. 381-384
|
[59] |
Hilton, I.B., D'Ippolito, A.M., Vockley, C.M. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers Nat. Biotechnol., 33 (2015),pp. 510-517
|
[60] |
Holohan, E.E., Kwong, C., Adryan, B. et al. PLoS Genet., 3 (2007),p. e112
|
[61] |
Hou, C., Dale, R., Dean, A. Cell type specificity of chromatin organization mediated by CTCF and cohesin Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 3651-3656
|
[62] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[63] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[64] |
Imakaev, M.V., Fudenberg, G., Mirny, L.A. Modeling chromosomes: beyond pretty pictures FEBS Lett., 589 (2015),pp. 3031-3036
|
[65] |
International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
|
[66] |
Jasin, M., Rothstein, R. Repair of strand breaks by homologous recombination Cold Spring Harb. Perspect. Biol., 5 (2013),p. a012740
|
[67] |
Jia, Z., Guo, Y., Tang, Y. et al. Mol. Cell. Biol., 34 (2014),pp. 3895-3910
|
[68] |
Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
|
[69] |
Jiang, W., Marraffini, L.A. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems Annu. Rev. Microbiol., 69 (2015),pp. 209-228
|
[70] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[71] |
Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
|
[72] |
Johnson, D.S., Mortazavi, A., Myers, R.M. et al. Science, 316 (2007),pp. 1497-1502
|
[73] |
Kearns, N.A., Pham, H., Tabak, B. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion Nat. Methods, 12 (2015),pp. 401-403
|
[74] |
Kehayova, P., Monahan, K., Chen, W. et al. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17195-17200
|
[75] |
Kim, T.H., Abdullaev, Z.K., Smith, A.D. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome Cell, 128 (2007),pp. 1231-1245
|
[76] |
Kim, T.K., Hemberg, M., Gray, J.M. et al. Widespread transcription at neuronal activity-regulated enhancers Nature, 465 (2010),pp. 182-187
|
[77] |
Kmita, M., Kondo, T., Duboule, D. Nat. Genet., 26 (2000),pp. 451-454
|
[78] |
Kraft, K., Geuer, S., Will, A.J. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice Cell Rep., 10 (2015),pp. 833-839
|
[79] |
Kungulovski, G., Jeltsch, A. Epigenome editing: state of the art, concepts, and perspectives Trends Genet., 32 (2016),pp. 101-113
|
[80] |
Lagha, M., Bothma, J.P., Levine, M. Mechanisms of transcriptional precision in animal development Trends Genet., 28 (2012),pp. 409-416
|
[81] |
Lander, E.S. The heroes of CRISPR Cell, 164 (2016),pp. 18-28
|
[82] |
Lee, H.J., Kim, E., Kim, J.S. Targeted chromosomal deletions in human cells using zinc finger nucleases Genome Res., 20 (2010),pp. 81-89
|
[83] |
Lee, H.J., Kweon, J., Kim, E. et al. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases Genome Res., 22 (2012),pp. 539-548
|
[84] |
Lefebvre, J.L., Kostadinov, D., Chen, W.V. et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system Nature, 488 (2012),pp. 517-521
|
[85] |
Levine, M., Cattoglio, C., Tjian, R. Looping back to leap forward: transcription enters a new era Cell, 157 (2014),pp. 13-25
|
[86] |
Li, J., Shou, J., Guo, Y. et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 J. Mol. Cell Biol., 7 (2015),pp. 284-298
|
[87] |
Li, J., Shou, J., Wu, Q. DNA fragment editing of genomes by CRISPR/Cas9 Hereditas (Beijing), 37 (2015),pp. 992-1002
|
[88] |
Li, L., Lyu, X., Hou, C. et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing Mol. Cell, 58 (2015),pp. 216-231
|
[89] |
Lieberman-Aiden, E., van Berkum, N.L., Williams, L. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome Science, 326 (2009),pp. 289-293
|
[90] |
Lindahl, T. Instability and decay of the primary structure of DNA Nature, 362 (1993),pp. 709-715
|
[91] |
Lobanenkov, V.V., Nicolas, R.H., Adler, V.V. et al. Oncogene, 5 (1990),pp. 1743-1753
|
[92] |
Lupiáñez, D.G., Kraft, K., Heinrich, V. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions Cell, 161 (2015),pp. 1012-1025
|
[93] |
Ma, H., Naseri, A., Reyes-Gutierrez, P. et al. Multicolor CRISPR labeling of chromosomal loci in human cells Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 3002-3007
|
[94] |
Maddalo, D., Manchado, E., Concepcion, C.P. et al. Nature, 516 (2014),pp. 423-427
|
[95] |
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S. et al. An updated evolutionary classification of CRISPR-Cas systems Nat. Rev. Microbiol., 13 (2015),pp. 722-736
|
[96] |
Mali, P., Esvelt, K.M., Church, G.M. Cas9 as a versatile tool for engineering biology Nat. Methods, 10 (2013),pp. 957-963
|
[97] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[98] |
Maston, G.A., Evans, S.K., Green, M.R. Transcriptional regulatory elements in the human genome Annu. Rev. Genomics Hum. Genet., 7 (2006),pp. 29-59
|
[99] |
Maurano, M.T., Humbert, R., Rynes, E. et al. Systematic localization of common disease-associated variation in regulatory DNA Science, 337 (2012),pp. 1190-1195
|
[100] |
McVey, M., Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings Trends Genet., 24 (2008),pp. 529-538
|
[101] |
Meyer, C.A., Liu, X.S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology Nat. Rev. Genet., 15 (2014),pp. 709-721
|
[102] |
Mills, A.A., Bradley, A. From mouse to man: generating megabase chromosome rearrangements Trends Genet., 17 (2001),pp. 331-339
|
[103] |
Monahan, K., Rudnick, N.D., Kehayova, P.D. et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-alpha gene expression Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 9125-9130
|
[104] |
Nakahashi, H., Kwon, K.R., Resch, W. et al. A genome-wide map of CTCF multivalency redefines the CTCF code Cell Rep., 3 (2013),pp. 1678-1689
|
[105] |
Narendra, V., Rocha, P.P., An, D. et al. Science, 347 (2015),pp. 1017-1021
|
[106] |
Nichols, M.H., Corces, V.G. A CTCF code for 3D genome architecture Cell, 162 (2015),pp. 703-705
|
[107] |
Noonan, J.P., McCallion, A.S. Genomics of long-range regulatory elements Annu. Rev. Genomics Hum. Genet., 11 (2010),pp. 1-23
|
[108] |
Nora, E.P., Lajoie, B.R., Schulz, E.G. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre Nature, 485 (2012),pp. 381-385
|
[109] |
Ong, C.T., Corces, V.G. CTCF: an architectural protein bridging genome topology and function Nat. Rev. Genet., 15 (2014),pp. 234-246
|
[110] |
Orkin, S.H. Globin gene regulation and switching: circa 1990 Cell, 63 (1990),pp. 665-672
|
[111] |
Orr-Weaver, T.L., Szostak, J.W., Rothstein, R.J. Yeast transformation: a model system for the study of recombination Proc. Natl. Acad. Sci. USA, 78 (1981),pp. 6354-6358
|
[112] |
Parelho, V., Hadjur, S., Spivakov, M. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms Cell, 132 (2008),pp. 422-433
|
[113] |
Phillips-Cremins, J.E., Sauria, M.E., Sanyal, A. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment Cell, 153 (2013),pp. 1281-1295
|
[114] |
Quitschke, W.W., Taheny, M.J., Fochtmann, L.J. et al. Differential effect of zinc finger deletions on the binding of CTCF to the promoter of the amyloid precursor protein gene Nucleic Acids Res., 28 (2000),pp. 3370-3378
|
[115] |
Rada-Iglesias, A., Bajpai, R., Swigut, T. et al. A unique chromatin signature uncovers early developmental enhancers in humans Nature, 470 (2011),pp. 279-283
|
[116] |
Rao, S.S., Huntley, M.H., Durand, N.C. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping Cell, 159 (2014),pp. 1665-1680
|
[117] |
Ren, B., Dixon, J.R. A CRISPR connection between chromatin topology and genetic disorders Cell, 161 (2015),pp. 955-957
|
[118] |
Renda, M., Baglivo, I., Burgess-Beusse, B. et al. Critical DNA binding interactions of the insulator protein CTCF: a small number of zinc fingers mediate strong binding, and a single finger-DNA interaction controls binding at imprinted loci J. Biol. Chem., 282 (2007),pp. 33336-33345
|
[119] |
Rhee, H.S., Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution Cell, 147 (2011),pp. 1408-1419
|
[120] |
Ribich, S., Tasic, B., Maniatis, T. Identification of long-range regulatory elements in the protocadherin-alpha gene cluster Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 19719-19724
|
[121] |
Saitoh, N., Bell, A.C., Recillas-Targa, F. et al. Structural and functional conservation at the boundaries of the chicken beta-globin domain EMBO J., 19 (2000),pp. 2315-2322
|
[122] |
Sanborn, A.L., Rao, S.S., Huang, S.C. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E6456-E6465
|
[123] |
Sancar, A., Rupp, W.D. Cell, 33 (1983),pp. 249-260
|
[124] |
Sander, J.D., Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol., 32 (2014),pp. 347-355
|
[125] |
Sanyal, A., Lajoie, B.R., Jain, G. et al. The long-range interaction landscape of gene promoters Nature, 489 (2012),pp. 109-113
|
[126] |
Schmidt, D., Schwalie, P.C., Wilson, M.D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages Cell, 148 (2012),pp. 335-348
|
[127] |
Schoenherr, C.J., Anderson, D.J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes Science, 267 (1995),pp. 1360-1363
|
[128] |
Sexton, T., Cavalli, G. The role of chromosome domains in shaping the functional genome Cell, 160 (2015),pp. 1049-1059
|
[129] |
Shen, Y., Yue, F., McCleary, D.F. et al. Nature, 488 (2012),pp. 116-120
|
[130] |
Simonis, M., Klous, P., Splinter, E. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C) Nat. Genet., 38 (2006),pp. 1348-1354
|
[131] |
Spitz, F., Herkenne, C., Morris, M.A. et al. Nat. Genet., 37 (2005),pp. 889-893
|
[132] |
Splinter, E., Heath, H., Kooren, J. et al. Genes Dev., 20 (2006),pp. 2349-2354
|
[133] |
Suo, L., Lu, H., Ying, G. et al. Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase J. Mol. Cell Biol., 4 (2012),pp. 362-376
|
[134] |
Tai, D.J., Ragavendran, A., Manavalan, P. et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR Nat. Neurosci., 19 (2016),pp. 517-522
|
[135] |
Tang, Z., Luo, O.J., Li, X. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription Cell, 163 (2015),pp. 1611-1627
|
[136] |
Tanimoto, K., Liu, Q., Bungert, J. et al. Nature, 398 (1999),pp. 344-348
|
[137] |
Thakore, P.I., D'Ippolito, A.M., Song, L. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements Nat. Methods, 12 (2015),pp. 1143-1149
|
[138] |
Thu, C.A., Chen, W.V., Rubinstein, R. et al. Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins Cell, 158 (2014),pp. 1045-1059
|
[139] |
Thurman, R.E., Rynes, E., Humbert, R. et al. The accessible chromatin landscape of the human genome Nature, 489 (2012),pp. 75-82
|
[140] |
Tjian, R., Maniatis, T. Transcriptional activation: a complex puzzle with few easy pieces Cell, 77 (1994),pp. 5-8
|
[141] |
Torres, R., Martin, M.C., Garcia, A. et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system Nat. Commun., 5 (2014),p. 3964
|
[142] |
Vietri Rudan, M., Barrington, C., Henderson, S. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture Cell Rep., 10 (2015),pp. 1297-1309
|
[143] |
Visel, A., Blow, M.J., Li, Z. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers Nature, 457 (2009),pp. 854-858
|
[144] |
Wang, H., Maurano, M.T., Qu, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation Genome Res., 22 (2012),pp. 1680-1688
|
[145] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[146] |
Weckselblatt, B., Rudd, M.K. Human structural variation: mechanisms of chromosome rearrangements Trends Genet., 31 (2015),pp. 587-599
|
[147] |
Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
|
[148] |
Wendt, K.S., Yoshida, K., Itoh, T. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor Nature, 451 (2008),pp. 796-801
|
[149] |
Whyte, W.A., Orlando, D.A., Hnisz, D. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes Cell, 153 (2013),pp. 307-319
|
[150] |
Wright, A.V., Nunez, J.K., Doudna, J.A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering Cell, 164 (2016),pp. 29-44
|
[151] |
Wu, Q. Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes Genetics, 169 (2005),pp. 2179-2188
|
[152] |
Wu, Q., Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes Cell, 97 (1999),pp. 779-790
|
[153] |
Wu, Q., Zhang, T., Cheng, J.F. et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters Genome Res., 11 (2001),pp. 389-404
|
[154] |
Wu, S., Ying, G., Wu, Q. et al. Toward simpler and faster genome-wide mutagenesis in mice Nat. Genet., 39 (2007),pp. 922-930
|
[155] |
Xi, H., Shulha, H.P., Lin, J.M. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome PLoS Genet., 3 (2007),p. e136
|
[156] |
Xiao, A., Wang, Z., Hu, Y. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish Nucleic Acids Res., 41 (2013),p. e141
|
[157] |
Xie, X., Mikkelsen, T.S., Gnirke, A. et al. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 7145-7150
|
[158] |
Xu, C., Corces, V.G. Towards a predictive model of chromatin 3D organization Semin. Cell Dev. Biol. (2015)
|
[159] |
Yokota, S., Hirayama, T., Hirano, K. et al. Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster J. Biol. Chem., 286 (2011),pp. 31885-31895
|
[160] |
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
|
[161] |
Zhang, T., Haws, P., Wu, Q. Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation Genome Res., 14 (2004),pp. 79-89
|
[162] |
Zhang, Y., McCord, R.P., Ho, Y.J. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations Cell, 148 (2012),pp. 908-921
|
[163] |
Zhao, Z., Tavoosidana, G., Sjolinder, M. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions Nat. Genet., 38 (2006),pp. 1341-1347
|
[164] |
Zou, C., Huang, W., Ying, G. et al. Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires Neuroscience, 144 (2007),pp. 579-603
|