5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 5
May  2016
Turn off MathJax
Article Contents

Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology

doi: 10.1016/j.jgg.2016.03.001
More Information
  • Corresponding author: E-mail address: lijfeng3@mail.sysu.edu.cn (Jian-Feng Li)
  • Received Date: 2016-01-03
  • Accepted Date: 2016-03-04
  • Rev Recd Date: 2016-03-02
  • Available Online: 2016-03-11
  • Publish Date: 2016-05-20
  • The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies.
  • loading
  • [1]
    Ali, Z., Abulfaraj, A., Idris, A. et al. CRISPR/Cas9-mediated viral interference in plants Genome Biol., 16 (2015),p. 238
    [2]
    Ali, Z., Abul-faraj, A., Li, L. et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system Mol. Plant, 8 (2015),pp. 1288-1291
    [3]
    Bae, S., Park, J., Kim, J.S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases Bioinformatics, 30 (2014),pp. 1473-1475
    [4]
    Baltes, N.J., Gil-Humanes, J., Cermak, T. et al. DNA replicons for plant genome engineering Plant Cell, 26 (2014),pp. 151-163
    [5]
    Baltes, N.J., Hummel, A.W., Konecna, E. et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system Nat. Plants, 1 (2015),p. 15145
    [6]
    Belhaj, K., Chaparro-Garcia, A., Kamoun, S. et al. Editing plant genomes with CRISPR/Cas9 Curr. Opin. Biotechnol., 32 (2015),pp. 76-84
    [7]
    Brooks, C., Nekrasov, V., Lippman, Z.B. et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system Plant Physiol., 166 (2014),pp. 1292-1297
    [8]
    Butler, N.M., Atkins, P.A., Voytas, D.F. et al. PLoS One, 10 (2015),p. e0144591
    [9]
    Cai, Y., Chen, L., Liu, X. et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots PLoS One, 10 (2015),p. e0136064
    [10]
    Cermak, T., Baltes, N.J., Cegan, R. et al. High-frequency, precise modification of the tomato genome Genome Biol., 16 (2015),p. 232
    [11]
    Chari, R., Mali, P., Moosburner, M. et al. Nat. Methods, 12 (2015),pp. 823-826
    [12]
    Chen, B., Gibert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
    [13]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [14]
    Dang, Y., Jia, G., Choi, J. et al. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency Genome Biol., 16 (2015),p. 280
    [15]
    Doench, J.G., Hartenian, E., Graham, D.B. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation Nat. Biotechnol., 32 (2014),pp. 1262-1267
    [16]
    Doudna, J.A., Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [17]
    Du, H., Zeng, X., Zhao, M. et al. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 J. Biotechnol., 217 (2016),pp. 90-97
    [18]
    Duan, Y.B., Li, J., Qin, R.Y. et al. Plant Mol. Biol., 90 (2016),pp. 49-62
    [19]
    Endo, M., Mikami, M., Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice Plant Cell Physiol., 56 (2015),pp. 41-47
    [20]
    Endo, M., Mikami, M., Toki, S. Bi-allelic gene targeting in rice Plant Physiol., 170 (2016),pp. 667-677
    [21]
    Esvelt, K.M., Mali, P., Braff, J.L. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing Nat. Methods, 10 (2013),pp. 1116-1121
    [22]
    Fan, D., Liu, T., Li, C. et al. Sci. Rep., 5 (2015),p. 12217
    [23]
    Fauser, F., Schiml, S., Puchta, H. Plant J., 79 (2014),pp. 348-359
    [24]
    Feng, Z., Mao, Y., Xu, N. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 4632-4637
    [25]
    Feng, Z., Zhang, B., Ding, W. et al. Efficient genome editing in plants using a CRISPR/Cas system Cell Res., 23 (2013),pp. 1229-1232
    [26]
    Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [27]
    Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
    [28]
    Gagnon, J.A., Valen, E., Thyme, S.B. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs PLoS One, 9 (2014),p. e98186
    [29]
    Gaj, T., Gersbach, C.A., Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering Trends Biotechnol., 31 (2013),pp. 397-405
    [30]
    Gao, J., Wang, G., Ma, S. et al. Plant Mol. Biol., 87 (2015),pp. 99-110
    [31]
    Gao, Y., Zhang, Y., Zhang, D. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 2275-2280
    [32]
    Hilton, I.B., D'lppolito, A.M., Vockley, C.M. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers Nat. Biotechnol., 33 (2015),pp. 510-517
    [33]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [34]
    Hyun, Y., Kim, J., Cho, S.W. et al. Planta, 241 (2015),pp. 271-284
    [35]
    Ito, Y., Nishizawa-Yokoi, A., Endo, M. et al. Biochem. Biophys. Res. Commun., 467 (2015),pp. 76-82
    [36]
    Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. et al. Targeted genome modifications in soybean with CRISPR/Cas9 BMC Biotechnol., 15 (2015),p. 16
    [37]
    Ji, X., Zhang, H., Zhang, Y. et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants Nat. Plants, 1 (2015),p. 15144
    [38]
    Jia, H., Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA PLoS One, 9 (2014),p. e93806
    [39]
    Jiang, W., Brueggeman, A.J., Horken, K.M. et al. Eukaryot. Cell, 13 (2014),pp. 1465-1469
    [40]
    Jiang, W., Yang, B., Weeks, D.P. PLoS One, 9 (2014),p. e99225
    [41]
    Jiang, W., Zhou, H., Bi, H. et al. Nucleic Acids Res., 41 (2013),p. e188
    [42]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [43]
    Johnson, R.A., Gurevich, V., Filler, S. et al. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta Plant Mol. Biol., 87 (2015),pp. 143-156
    [44]
    Karvelis, T., Gasiunas, G., Young, J. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements Genome Biol., 16 (2015),p. 253
    [45]
    Kearns, N.A., Pham, H., Tabak, B. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion Nat. Methods, 12 (2015),pp. 401-403
    [46]
    Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities Nature, 523 (2015),pp. 481-485
    [47]
    Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2015),pp. 583-588
    [48]
    Lawrenson, T., Shorinola, O., Stacey, N. et al. Genome Biol., 16 (2015),p. 258
    [49]
    Lei, Y., Lu, L., Liu, H.Y. et al. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants Mol. Plant, 7 (2014),pp. 1494-1496
    [50]
    Li, J.F., Norville, J.E., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
    [51]
    Li, Z., Liu, Z.B., Xing, A. et al. Cas9-guide RNA directed genome editing in soybean Plant Physiol., 169 (2015),pp. 960-970
    [52]
    Liang, Z., Zhang, K., Chen, K. et al. J. Genet. Genomics, 41 (2014),pp. 63-68
    [53]
    Lowder, L.G., Zhang, D., Baltes, N.J. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation Plant Physiol., 169 (2015),pp. 971-985
    [54]
    Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
    [55]
    Ma, H., Naseri, A., Reyes-Gutierrez, P. et al. Multicolor CRISPR labeling of chromosomal loci in human cells Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 3002-3007
    [56]
    Mali, P., Aach, J., Stranges, P.B. et al. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
    [57]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [58]
    Malina, A., Cameron, C.J.F., Robert, F. et al. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing Nat. Commun., 6 (2015),p. 10124
    [59]
    Mao, Y., Zhang, H., Xu, N. et al. Application of the CRISPR-Cas system for efficient genome engineering in plants Mol. Plant, 6 (2013),pp. 2008-2011
    [60]
    Mao, Y., Zhang, Z., Feng, Z. et al. Plant Biotechnol. J., 14 (2016),pp. 519-532
    [61]
    Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S. et al. Plant Physiol., 164 (2014),pp. 537-547
    [62]
    Miao, J., Guo, D., Zhang, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system Cell Res., 23 (2013),pp. 1233-1236
    [63]
    Michno, J.M., Wang, X., Liu, J. et al. GM Crops Food., 6 (2015),pp. 243-252
    [64]
    Mikami, M., Toki, S., Endo, M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice Plant Mol. Biol., 88 (2015),pp. 561-572
    [65]
    Mikami, M., Toki, S., Endo, M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice Plant Cell Rep., 34 (2015),pp. 1807-1815
    [66]
    Nekrasov, V., Staskawicz, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
    [67]
    Ning, Y.Q., Ma, Z.Y., Huang, H.W. et al. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14 Nucleic. Acids Res., 43 (2015),pp. 1469-1484
    [68]
    Nishimasu, H., Ran, F.A., Hsu, P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA Cell, 156 (2014),pp. 935-949
    [69]
    O'Connell, M.R., Oakes, B.L., Sternberg, S.H. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9 Nature, 516 (2014),pp. 263-266
    [70]
    Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
    [71]
    Piatek, A., Ali, Z., Baazim, H. et al. Plant Biotechnol. J., 13 (2014),pp. 578-589
    [72]
    Puchta, H., Fauser, F. Synthetic nucleases for genome engineering in plants: prospects for a bright future Plant J., 78 (2014),pp. 727-741
    [73]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [74]
    Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
    [75]
    Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
    [76]
    Ron, M., Kajala, K., Pauluzzi, G. et al. Plant Physiol., 166 (2014),pp. 455-469
    [77]
    Schaeffer, G.M., Nakata, P.A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field Plant Sci., 240 (2015),pp. 130-142
    [78]
    Schiml, S., Fauser, F., Puchta, H. Plant J., 80 (2014),pp. 1139-1150
    [79]
    Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [80]
    Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science (2016)
    [81]
    Steinert, J., Schiml, S., Fauser, F. et al. Plant J., 84 (2015),pp. 1295-1305
    [82]
    Sternberg, S.H., Redding, S., Jinek, M. et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 Nature, 507 (2014),pp. 62-67
    [83]
    Sugano, S.S., Shirakawa, M., Takagi, J. et al. Plant Cell Physiol., 55 (2014),pp. 475-481
    [84]
    Sun, X., Hu, Z., Chen, R. et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system Sci. Rep., 5 (2015),p. 10342
    [85]
    Svitashev, S., Young, J.K., Schwartz, C. et al. Targeted mutagenesis, precise genome editing, and site-specific gene insertion in maize using Cas9 and guide RNA Plant Physiol., 169 (2015),pp. 931-945
    [86]
    Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging Cell, 159 (2014),pp. 635-646
    [87]
    Tsai, S.Q., Wyvekens, N., Khayter, C. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing Nat. Biotechnol., 32 (2014),pp. 569-576
    [88]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR/Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [89]
    Upadhyay, S.K., Kumar, J., Alok, A. et al. RNA-guided genome editing for targeted gene mutations in wheat G3, 3 (2013),pp. 2233-2238
    [90]
    Voytas, D.F. Plant genome engineering with sequence-specific nucleases Annu. Rev. Plant Biol., 64 (2013),pp. 327-350
    [91]
    Wang, Y., Cheng, X., Shan, Q. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [92]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [93]
    Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
    [94]
    Wang, S., Zhang, S., Wang, W. et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system Plant Cell Rep., 34 (2015),pp. 1473-1476
    [95]
    Weeks, D.P., Spalding, M.H., Yang, B. Use of designer nucleases for targeted gene and genome editing in plants Plant Biotechnol. J., 14 (2016),pp. 483-495
    [96]
    Woo, J.W., Kim, J., Kwon, S.I. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins Nat. Biotechnol., 33 (2015),pp. 1162-1164
    [97]
    Xie, K., Minkenberg, B., Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 3570-3575
    [98]
    Xie, K., Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system Mol. Plant, 6 (2013),pp. 1975-1983
    [99]
    Xie, K., Zhang, J., Yang, Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops Mol. Plant, 7 (2014),pp. 923-926
    [100]
    Xing, H.L., Dong, L., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014),p. 327
    [101]
    Xu, R.F., Li, H., Qin, R. et al. Rice, 7 (2014),p. 5
    [102]
    Xu, R.F., Li, H., Qin, R.Y. et al. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system Sci. Rep., 5 (2015),p. 11491
    [103]
    Yan, L., Wei, S., Wu, Y. et al. Mol. Plant, 8 (2015),pp. 1820-1823
    [104]
    Yan, M., Zhou, S.R., Xue, H.W. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system J. Integr. Plant Biol., 57 (2015),pp. 613-617
    [105]
    Yin, K., Han, T., Liu, G. et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing Sci. Rep., 5 (2015),p. 14926
    [106]
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system Cell, 163 (2015),pp. 759-771
    [107]
    Zhang, H., Zhang, J., Wei, P. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation Plant Biotechnol. J., 12 (2014),pp. 797-807
    [108]
    Zhang, Z., Mao, Y., Ha, S. et al. Plant Cell Rep. (2015)
    [109]
    Zhang, D., Li, Z., Li, J.F. Genome editing: new antiviral weapon for plants Nat. Plants, 1 (2015),p. 15146
    [110]
    Zhou, H., Liu, B., Weeks, D.P. et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice Nucleic Acids Res., 42 (2014),pp. 10903-10914
    [111]
    Zhou, J., Peng, Z., Long, J. et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice Plant J., 82 (2015),pp. 632-643
    [112]
    Zhou, X., Jacobs, T.B., Xue, L.J. et al. New Phytol., 208 (2015),pp. 298-301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return