5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 4
Apr.  2016

The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage

doi: 10.1016/j.jgg.2016.02.007
More Information
  • Corresponding author: E-mail address: slbao@genetics.ac.cn (Shilai Bao)
  • Received Date: 2016-01-08
  • Accepted Date: 2016-02-15
  • Rev Recd Date: 2016-02-06
  • Available Online: 2016-03-14
  • Publish Date: 2016-04-20
  • Plant root stem cells and their surrounding microenvironment, namely the stem cell niche, are hypersensitive to DNA damage. However, the molecular mechanisms that help maintain the genome stability of root stem cells remain elusive. Here we show that the root stem cells in the skb1 (Shk1 kinase binding protein 1) mutant undergoes DNA damage-induced cell death, which is enhanced when combined with a lesion of the Ataxia-telangiectasia mutated (ATM) or the ATM/RAD3-related (ATR) genes, suggesting that the SKB1 plays a synergistically effect with ATM and ATR in DNA damage pathway. We also provide evidence that SKB1 is required for the maintenance of quiescent center (QC), a root stem cell niche, under DNA damage treatments. Furthermore, we report decreased and ectopic expression of SHORTROOT (SHR) in response to DNA damage in the skb1 root tips, while the expression of SCARECROW (SCR) remains unaffected. Our results uncover a new mechanism of plant root stem cell maintenance under DNA damage conditions that requires SKB1.
  • [1]
    Bao, S., Qyang, Y., Yang, P. et al. J. Biol. Chem., 276 (2001),pp. 14549-14552
    [2]
    Baurle, I., Laux, T. Apical meristems: the plant's fountain of youth Bioessays, 25 (2003),pp. 961-970
    [3]
    Bray, C.M., West, C.E. DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity New Phytol., 168 (2005),pp. 511-528
    [4]
    Colon-Carmona, A., You, R., Haimovitch-Gal, T. et al. Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein Plant J., 20 (1999),pp. 503-508
    [5]
    Cruz-Ramirez, A., Diaz-Trivino, S., Blilou, I. et al. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division Cell, 150 (2012),pp. 1002-1015
    [6]
    Cui, H., Levesque, M.P., Vernoux, T. et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants Science, 316 (2007),pp. 421-425
    [7]
    Culligan, K., Tissier, A., Britt, A. Plant Cell, 16 (2004),pp. 1091-1104
    [8]
    Culligan, K.M., Robertson, C.E., Foreman, J. et al. ATR and ATM play both distinct and additive roles in response to ionizing radiation Plant J., 48 (2006),pp. 947-961
    [9]
    De Schutter, K., Joubes, J., Cools, T. et al. Plant Cell, 19 (2007),pp. 211-225
    [10]
    Deng, X., Gu, L., Liu, C. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19114-19119
    [11]
    Dolan, L., Janmaat, K., Willemsen, V. et al. Development, 119 (1993),pp. 71-84
    [12]
    Flynn, R.L., Zou, L. ATR: a master conductor of cellular responses to DNA replication stress Trends Biochem. Sci., 36 (2010),pp. 133-140
    [13]
    Fulcher, N., Sablowski, R. Hypersensitivity to DNA damage in plant stem cell niches Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 20984-20988
    [14]
    Gilbreth, M., Yang, P., Bartholomeusz, G. et al. Negative regulation of mitosis in fission yeast by the Shk1 interacting protein Skb1 and its human homolog, Skb1Hs Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 14781-14786
    [15]
    Helariutta, Y., Fukaki, H., Wysocka-Diller, J. et al. Cell, 101 (2000),pp. 555-567
    [16]
    He, W., Ma, X., Yang, X. et al. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage Nucleic Acids Res., 39 (2011),pp. 4719-4727
    [17]
    Koc, A., Wheeler, L.J., Mathews, C.K. et al. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools J. Biol. Chem., 279 (2004),pp. 223-230
    [18]
    Koizumi, K., Gallagher, K.L. Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning Development, 140 (2013),pp. 1292-1300
    [19]
    Koizumi, K., Hayashi, T., Wu, S. et al. The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 13010-13015
    [20]
    Lee, M.Y., Kim, M.A., Kim, H.J. et al. Alkylating agent methyl methanesulfonate (MMS) induces a wave of global protein hyperacetylation: implications in cancer cell death Biochem. Biophys. Res. Commun., 360 (2007),pp. 483-489
    [21]
    Levesque, M.P., Vernoux, T., Busch, W. et al. PLoS Biol., 4 (2006),p. e143
    [22]
    Li, Y., Zheng, L., Corke, F. et al. Genes Dev., 22 (2008),pp. 1331-1336
    [23]
    Menges, M., Hennig, L., Gruissem, W. et al. J. Biol. Chem., 277 (2002),pp. 41987-42002
    [24]
    Nakajima, K., Benfey, P.N. Signaling in and out: control of cell division and differentiation in the shoot and root Plant Cell, 14 (2002),pp. S265-S276
    [25]
    Nakajima, K., Sena, G., Nawy, T. et al. Intercellular movement of the putative transcription factor SHR in root patterning Nature, 413 (2001),pp. 307-311
    [26]
    Pal, S., Vishwanath, S.N., Erdjument-Bromage, H. et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes Mol. Cell. Biol., 24 (2004),pp. 9630-9645
    [27]
    Pei, Y., Niu, L., Lu, F. et al. Plant Physiol., 144 (2007),pp. 1913-1923
    [28]
    Ricaud, L., Proux, C., Renou, J.P. et al. PLoS One, 2 (2007),p. e430
    [29]
    Sabatini, S., Heidstra, R., Wildwater, M. et al. Genes Dev., 17 (2003),pp. 354-358
    [30]
    Sakano, K., Oikawa, S., Hasegawa, K. et al. Jpn J. Cancer Res., 92 (2001),pp. 1166-1174
    [31]
    Scoumanne, A., Zhang, J., Chen, X. PRMT5 is required for cell-cycle progression and p53 tumor suppressor function Nucleic Acids Res., 37 (2009),pp. 4965-4976
    [32]
    Shiloh, Y. The ATM-mediated DNA-damage response: taking shape Trends Biochem. Sci., 31 (2006),pp. 402-410
    [33]
    Tuteja, N., Ahmad, P., Panda, B.B. et al. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases Mutat. Res., 681 (2009),pp. 134-149
    [34]
    Umeda, M., Umeda-Hara, C., Yamaguchi, M. et al. Differential expression of genes for cyclindependent protein kinases in rice plants Plant Physiol., 119 (1999),pp. 31-40
    [35]
    Wang, X., Zhang, Y., Ma, Q. et al. EMBO J., 26 (2007),pp. 1934-1941
    [36]
    Wildwater, M., Campilho, A., Perez-Perez, J.M. et al. Cell, 123 (2005),pp. 1337-1349
    [37]
    Williams, L., Fletcher, J.C. Curr. Opin. Plant Biol., 8 (2005),pp. 582-586
    [38]
    Wu, S., Gallagher, K.L. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor Plant J., 74 (2013),pp. 148-159
    [39]
    Yang, M., Sun, J., Sun, X. et al. PLoS Genet., 5 (2009),p. e1000514
    [40]
    Yue, M., Li, Q., Zhang, Y. et al. Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem PLoS One, 8 (2013),p. e83258
    [41]
    Zhang, Z., Zhang, S., Zhang, Y. et al. Plant Cell, 23 (2011),pp. 396-411
    [42]
    Zhou, Z., Sun, X., Zou, Z. et al. PRMT5 regulates Golgi apparatus structure through methylation of the golgin GM130 Cell Res., 20 (2010),pp. 1023-1033
  • Relative Articles

    [1]Xiyan Liao, Haiyan Zhou, Tuo Deng. The composition, function, and regulation of adipose stem and progenitor cells[J]. Journal of Genetics and Genomics, 2022, 49(4): 308-315. doi: 10.1016/j.jgg.2022.02.014
    [2]Juanjuan Yu, Xiaonan Ma, Lianlian Wang, Nannan Dong, Kai Wang, Qingye You, Yifei Xu, Chong Wang, Zhiping Dong, Zhaobin Shi, Shaojun Dai, Ling Bai, Chun-Peng Song. Arabidopsis CAP1 mediates ammonium-regulated root hair growth by influencing vesicle trafficking and the cytoskeletal arrangement in root hair cells[J]. Journal of Genetics and Genomics, 2022, 49(10): 986-989. doi: 10.1016/j.jgg.2022.02.005
    [3]Xiuyun Xu, Gan Xiong, Ming Zhang, Jiaxiang Xie, Shuang Chen, Kang Li, Jingting Li, Yong Bao, Cheng Wang, Demeng Chen. Sox9+ cells are required for salivary gland regeneration after radiation damage via the Wnt/β-catenin pathway[J]. Journal of Genetics and Genomics, 2022, 49(3): 230-239. doi: 10.1016/j.jgg.2021.09.008
    [4]Xiaojie Wang, Bo Wu, Xin Sui, Zhufeng Zhang, Tao Liu, Yingjun Li, Guoquan Hu, Mingxiong He, Nan Peng. CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis[J]. Journal of Genetics and Genomics, 2021, 48(2): 115-122. doi: 10.1016/j.jgg.2021.02.012
    [5]Kevin Christian Montecillo Gulay, Keisuke Aoshima, Yuki Shibata, Hironobu Yasui, Qin Yan, Atsushi Kobayashi, Takashi Kimura. KDM2B promotes cell viability by enhancing DNA damage response in canine hemangiosarcoma[J]. Journal of Genetics and Genomics, 2021, 48(7): 618-630. doi: 10.1016/j.jgg.2021.02.005
    [6]Qian Zhao, Jiawei Guan, Xia Wang. Intestinal stem cells and intestinal organoids[J]. Journal of Genetics and Genomics, 2020, 47(6): 289-299. doi: 10.1016/j.jgg.2020.06.005
    [7]Jun-Yu Ma, Sen Li, Lei-Ning Chen, Heide Schatten, Xiang-Hong Ou, Qing-Yuan Sun. Why is oocyte aneuploidy increased with maternal aging?[J]. Journal of Genetics and Genomics, 2020, 47(11): 659-671. doi: 10.1016/j.jgg.2020.04.003
    [8]Panfei Wang, Changmin Peng, Xia Liu, Hailong Liu, Yali Chen, Li Zheng, Baolin Han, Huadong Pei. OGT Mediated Histone H2B S112 GlcNAcylation Regulates DNA Damage Response[J]. Journal of Genetics and Genomics, 2015, 42(9): 467-475. doi: 10.1016/j.jgg.2015.07.002
    [9]Eun-Joon Lee, Prakash Rath, Jimei Liu, Dungsung Ryu, Lirong Pei, Satish K. Noonepalle, Austin Y. Shull, Qi Feng, N. Scott Litofsky, Douglas C. Miller, Douglas C. Anthony, Mark D. Kirk, John Laterra, Libin Deng, Hong-Bo Xin, Xinguo Wang, Jeong-Hyeon Choi, Huidong Shi. Identification of Global DNA Methylation Signatures in Glioblastoma-Derived Cancer Stem Cells[J]. Journal of Genetics and Genomics, 2015, 42(7): 355-371. doi: 10.1016/j.jgg.2015.06.003
    [10]Xuepeng Wang, Yan Yuan, Quan Zhou, Haifeng Wan, Mei Wang, Qi Zhou, Xiao-Yang Zhao, Jiahao Sha. RNA Guided Genome Editing in Mouse Germ-Line Stem Cells[J]. Journal of Genetics and Genomics, 2014, 41(7): 409-411. doi: 10.1016/j.jgg.2014.06.001
    [11]Fen Ji, Xiaohui Lv, Jianwei Jiao. The Role of MicroRNAs in Neural Stem Cells and Neurogenesis[J]. Journal of Genetics and Genomics, 2013, 40(2): 61-66. doi: 10.1016/j.jgg.2012.12.008
    [12]Peng-Juan Liang, Wen-Yuan Han, Qi-Hong Huang, Yan-Ze Li, Jin-Feng Ni, Qun-Xin She, Yu-Long Shen. Knockouts of RecA-Like Proteins RadC1 and RadC2 Have Distinct Responses to DNA Damage Agents in Sulfolobus islandicus[J]. Journal of Genetics and Genomics, 2013, 40(10): 533-542. doi: 10.1016/j.jgg.2013.05.004
    [13]Richard L. Carter, Anthony W.S. Chan. Pluripotent Stem Cells Models for Huntington's Disease: Prospects and Challenges[J]. Journal of Genetics and Genomics, 2012, 39(6): 253-259. doi: 10.1016/j.jgg.2012.04.006
    [14]Tianda Li, Xiao-Yang Zhao, Fei Teng, Xin Li, Minggui Jiang, Wei Li, Xuepeng Wang, Jialiang Wang, Lei Liu, Zhonghua Liu, Liu Wang, Qi Zhou. Derivation of Germline Competent Rat Embryonic Stem Cells from DA Rats[J]. Journal of Genetics and Genomics, 2012, 39(11): 603-606. doi: 10.1016/j.jgg.2012.06.006
    [15]Zhenkun Wang, Chao Sheng, Tianda Li, Fei Teng, Lisi Sang, Fenglin Cao, Ziwei Wang, Wanwan Zhu, Wei Li, Xiaoyang Zhao, Zhonghua Liu, Liu Wang, Qi Zhou. Generation of Tripotent Neural Progenitor Cells from Rat Embryonic Stem Cells[J]. Journal of Genetics and Genomics, 2012, 39(12): 643-651. doi: 10.1016/j.jgg.2012.07.013
    [16]Xiaoyang Zhao, Zhuo Lv, Lei Liu, Liu Wang, Man Tong, Qi Zhou. Derivation of embryonic stem cells from Brown Norway rats blastocysts[J]. Journal of Genetics and Genomics, 2010, 37(7): 467-473. doi: 10.1016/S1673-8527(09)60066-7
    [17]Yueying Li, Jing He, Fengchao Wang, Zhenyu Ju, Sheng Liu, Yu Zhang, Zhaohui Kou, Yanfeng Liu, Tao Cheng, Shaorong Gao. Differentiation of embryonic stem cells in adult bone marrow[J]. Journal of Genetics and Genomics, 2010, 37(7): 431-439. doi: 10.1016/S1673-8527(09)60062-X
    [18]Chuanying Pan, Amy Hicks, Xuan Guan, Hong Chen, Colin E. Bishop. SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells[J]. Journal of Genetics and Genomics, 2010, 37(4): 241-248. doi: 10.1016/S1673-8527(09)60042-4
    [19]Linfeng Li, Xiujuan Bai, Xuelian Gong, Hongkun Liu, Lina Chen, Weijun Guan, Yuehui Ma. Differentiation potential of bone marrow mesenchymal stem cells in duck[J]. Journal of Genetics and Genomics, 2009, 36(3): 133-140. doi: 10.1016/S1673-8527(08)60100-9
    [20]Xiaodong Zhao, Yijun Ruan, Chia-Lin Wei. Tackling the epigenome in the pluripotent stem cells[J]. Journal of Genetics and Genomics, 2008, 35(7): 403-412. doi: 10.1016/S1673-8527(08)60058-2
  • Cited by

    Periodical cited type(13)

    1. Qiu, C., Wang, T., Wang, H. et al. SISTER OF FCA physically associates with SKB1 to regulate flowering time in Arabidopsis thaliana. BMC Plant Biology, 2024, 24(1): 188. doi:10.1186/s12870-024-04887-y
    2. Barré-Villeneuve, C., Azevedo-Favory, J. R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment. International Journal of Molecular Sciences, 2024, 25(18): 9937. doi:10.3390/ijms25189937
    3. Yin, C., Sun, A., Guo, T. et al. Arabidopsis lamin-like proteins CRWN1 and CRWN2 interact with SUPPRESSOR of NPR1-1 INDUCIBLE 1 and RAD51D to prevent DNA damage. Plant Cell, 2023, 35(9): 3345-3362. doi:10.1093/plcell/koad169
    4. Wang, J., Huang, X., Zheng, D. et al. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. Journal of Genetics and Genomics, 2023, 50(2): 87-98. doi:10.1016/j.jgg.2022.04.008
    5. Cao, H., Liang, Y., Zhang, L. et al. AtPRMT5-mediated AtLCD methylation improves Cd2 + tolerance via increased H2S production in Arabidopsis. Plant Physiology, 2022, 190(4): 2637-2650. doi:10.1093/plphys/kiac376
    6. Drozda, A., Kurpisz, B., Arasimowicz-Jelonek, M. et al. Nitric Oxide Implication in Potato Immunity to Phytophthora infestans via Modifications of Histone H3/H4 Methylation Patterns on Defense Genes. International Journal of Molecular Sciences, 2022, 23(7): 4051. doi:10.3390/ijms23074051
    7. He, H., Chen, J., Zhao, J. et al. PRMT7 targets of Foxm1 controls alveolar myofibroblast proliferation and differentiation during alveologenesis. Cell Death and Disease, 2021, 12(9): 841. doi:10.1038/s41419-021-04129-1
    8. Ma, Z., Wang, W., Wang, S. et al. Symmetrical dimethylation of H4R3: A bridge linking DNA damage and repair upon oxidative stress. Redox Biology, 2020, 37: 101653. doi:10.1016/j.redox.2020.101653
    9. Plett, K.L., Raposo, A.E., Anderson, I.C. et al. Protein arginine methyltransferase expression affects ectomycorrhizal symbiosis and the regulation of hormone signaling pathways. Molecular Plant-Microbe Interactions, 2019, 32(10): 1291-1302. doi:10.1094/MPMI-01-19-0007-R
    10. Liu, X., Zhang, J., Liu, L. et al. Protein arginine methyltransferase 5-mediated epigenetic silencing of IRX1 contributes to tumorigenicity and metastasis of gastric cancer. Biochimica et Biophysica Acta - Molecular Basis of Disease, 2018, 1864(9): 2835-2844. doi:10.1016/j.bbadis.2018.05.015
    11. Li, Q., Jiao, J., Li, H. et al. Histone arginine methylation by Prmt5 is required for lung branching morphogenesis through repression of BMP signaling. Journal of Cell Science, 2018, 131(14): jcs.217406. doi:10.1242/jcs.217406
    12. Fu, Y., Ma, H., Chen, S. et al. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. Journal of Experimental Botany, 2018, 69(3): 579-588. doi:10.1093/jxb/erx419
    13. Plett, K.L., Raposo, A.E., Bullivant, S. et al. Root morphogenic pathways in Eucalyptus grandis are modified by the activity of protein arginine methyltransferases. BMC Plant Biology, 2017, 17(1): 62. doi:10.1186/s12870-017-1010-x

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.5 %FULLTEXT: 19.5 %META: 79.7 %META: 79.7 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.4 %其他: 3.4 %China: 48.3 %China: 48.3 %Russian Federation: 8.5 %Russian Federation: 8.5 %United States: 39.8 %United States: 39.8 %其他ChinaRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (92) PDF downloads (1) Cited by (13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return