[1] |
Ablain, J., Durand, E.M., Yang, S. et al. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish Dev. Cell, 32 (2015),pp. 756-764
|
[2] |
Baker, M.D., Ezzati, M., Aloisio, G.M. et al. The small GTPase Rheb is required for spermatogenesis but not oogenesis Reproduction, 147 (2014),pp. 615-625
|
[3] |
Bao, J., Ma, H.Y., Schuster, A. et al. Incomplete cre-mediated excision leads to phenotypic differences between Stra8-iCre; Mov10l1(lox/lox) and Stra8-iCre; Mov10l1(lox/Delta) mice Genesis, 51 (2013),pp. 481-490
|
[4] |
Chang, N., Sun, C., Gao, L. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos Cell Res., 23 (2013),pp. 465-472
|
[5] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[6] |
Dix, D.J., Allen, J.W., Collins, B.W. et al. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 3264-3268
|
[7] |
Dores, C., Alpaugh, W., Dobrinski, I. Cell Tissue Res., 349 (2012),pp. 691-702
|
[8] |
Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
|
[9] |
Dow, L.E., Fisher, J., O'Rourke, K.P. et al. Nat. Biotechnol., 33 (2015),pp. 390-394
|
[10] |
Eddy, E.M. Role of heat shock protein HSP70-2 in spermatogenesis Rev. Reprod., 4 (1999),pp. 23-30
|
[11] |
Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
|
[12] |
Gallardo, T., Shirley, L., John, G.B. et al. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre Genesis, 45 (2007),pp. 413-417
|
[13] |
Gossen, M., Bujard, H. Studying gene function in eukaryotes by conditional gene inactivation Annu. Rev. Genet., 36 (2002),pp. 153-173
|
[14] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[15] |
Huszar, J.M., Jia, Y., Reddy, J.K. et al. Med1 regulates meiotic progression during spermatogenesis in mice Reproduction, 149 (2015),pp. 597-604
|
[16] |
Inselman, A.L., Nakamura, N., Brown, P.R. et al. Heat shock protein 2 promoter drives Cre expression in spermatocytes of transgenic mice Genesis, 48 (2010),pp. 114-120
|
[17] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[18] |
Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K. et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells Bio. Reprod., 69 (2003),pp. 612-616
|
[19] |
Keber, R., Acimovic, J., Majdic, G. et al. Male germ cell-specific knockout of cholesterogenic cytochrome P450 lanosterol 14alpha-demethylase (Cyp51) J. Lipid Res., 54 (2013),pp. 1653-1661
|
[20] |
Lakso, M., Sauer, B., , Lee, E.J. et al. Targeted oncogene activation by site-specific recombination in transgenic mice Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 6232-6236
|
[21] |
Lei, Z., Lin, J., Li, X. et al. Postnatal male germ-cell expression of cre recombinase in Tex101-iCre transgenic mice Genesis, 48 (2010),pp. 717-722
|
[22] |
Li, D., Qiu, Z., Shao, Y. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 681-683
|
[23] |
Li, S., Lan, Z.J., Li, X. et al. J. Reprod. Infertil., 15 (2014),pp. 122-133
|
[24] |
Li, W., Teng, F., Li, T. et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 684-686
|
[25] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[26] |
Niu, Y., Shen, B., Cui, Y. et al. Cell, 156 (2014),pp. 836-843
|
[27] |
Ryding, A.D., Sharp, M.G., Mullins, J.J. Conditional transgenic technologies J. Endocrinol., 171 (2001),pp. 1-14
|
[28] |
Sadate-Ngatchou, P.I., Payne, C.J., Dearth, A.T. et al. Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice Genesis, 46 (2008),pp. 738-742
|
[29] |
Shen, Z., Zhang, X., Chai, Y. et al. Dev. Cell, 30 (2014),pp. 625-636
|
[30] |
Stolfi, A., Gandhi, S., Salek, F. et al. Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9 Development, 141 (2014),pp. 4115-4120
|
[31] |
Teves, M.E., Jha, K.N., Song, J. et al. Andrology, 1 (2013),pp. 37-46
|
[32] |
Toyooka, Y., Tsunekawa, N., Takahashi, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development Mech. Dev., 93 (2000),pp. 139-149
|
[33] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[34] |
Wu, Y., Liang, D., Wang, Y. et al. Cell Stem Cell, 13 (2013),pp. 659-662
|
[35] |
Wu, Y., Zhou, H., Fan, X. et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells Cell Res., 25 (2015),pp. 67-79
|
[36] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[37] |
Yuan, L., Liu, J.G., Zhao, J. et al. Mol. Cell, 5 (2000),pp. 73-83
|
[38] |
Zhang, M., Zhou, H., Zheng, C. et al. Sci. Rep., 4 (2014),p. 5936
|