[1] |
Aida, T., Chiyo, K., Usami, T. et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice Genome Biol., 16 (2015),p. 87
|
[2] |
Baltimore, D., Berg, P., Botchan, M. et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification Science, 348 (2015),pp. 36-38
|
[3] |
Bassett, A.R., Kong, L., Liu, J.L. J. Genet. Genomics, 42 (2015),pp. 301-309
|
[4] |
Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
|
[5] |
Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
|
[6] |
Bohannon, J. Biotechnology. Biologists devise invasion plan for mutations Science, 347 (2015)
|
[7] |
Chang, N., Sun, C., Gao, L. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos Cell Res., 23 (2013),pp. 465-472
|
[8] |
Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
|
[9] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[10] |
Datsenko, K.A., Pougach, K., Tikhonov, A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system Nat. Commun., 3 (2012),p. 945
|
[11] |
Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
|
[12] |
Dong, C., Qu, L., Wang, H. et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication Antiviral Res., 118 (2015),pp. 110-117
|
[13] |
Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
|
[14] |
Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
|
[15] |
Fujii, W., Onuma, A., Sugiura, K. et al. Biochem. Biophys. Res. Commun., 445 (2014),pp. 791-794
|
[16] |
Fujii, W., Onuma, A., Sugiura, K. et al. One-step generation of phenotype-expressing triple-knockout mice with heritable mutated alleles by the CRISPR/Cas9 system J. Reprod. Dev., 60 (2014),pp. 324-327
|
[17] |
Fujita, T., Fujii, H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR Biochem. Biophys. Res. Commun., 439 (2013),pp. 132-136
|
[18] |
Gantz, V.M., Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations Science, 348 (2015),pp. 442-444
|
[19] |
Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
|
[20] |
Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
|
[21] |
Han, J., Zhang, J., Chen, L. et al. RNA Biol., 11 (2014),pp. 829-835
|
[22] |
Heintze, J., Luft, C., Ketteler, R. A CRISPR CASe for high-throughput silencing Front. Genet., 4 (2013),p. 193
|
[23] |
Hemphill, J., Borchardt, E.K., Brown, K. et al. Optical control of CRISPR/Cas9 gene editing J. Am. Chem. Soc., 137 (2015),pp. 5642-5645
|
[24] |
Hilton, I.B., D'Ippolito, A.M., Vockley, C.M. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers Nat. Biotechnol., 33 (2015),pp. 510-517
|
[25] |
Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
|
[26] |
Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
|
[27] |
Hyun, Y., Kim, J., Cho, S. et al. Planta, 241 (2015),pp. 271-284
|
[28] |
Jao, L.E., Wente, S.R., Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13904-13909
|
[29] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[30] |
Kim, D., Bae, S., Park, J. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells Nat. Methods, 12 (2015),pp. 237-243
|
[31] |
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities Nature, 523 (2015),pp. 481-485
|
[32] |
Larson, M.H., Gilbert, L.A., Wang, X. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression Nat. Protoc., 8 (2013),pp. 2180-2196
|
[33] |
Lawhorn, I.E., Ferreira, J.P., Wang, C.L. PLoS One, 9 (2014),p. e113232
|
[34] |
Levy, A., Goren, M.G., Yosef, I. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA Nature, 520 (2015),pp. 505-510
|
[35] |
Li, D., Qiu, Z., Shao, Y. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 681-683
|
[36] |
Li, F., Cowley, D.O., Banner, D. et al. Sci. Rep., 4 (2014),p. 5290
|
[37] |
Li, J., Shou, J., Guo, Y. et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 J. Mol. Cell Biol., 7 (2015),pp. 284-298
|
[38] |
Li, W., Teng, F., Li, T. et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 684-686
|
[39] |
Liang, P.P., Xu, Y.W., Zhang, X.Y. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes Protein Cell, 6 (2015),pp. 363-372
|
[40] |
Liao, H.K., Gu, Y., Diaz, A. et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells Nat. Commun., 6 (2015),p. 6413
|
[41] |
Liao, J., Karnik, R., Gu, H. et al. Nat. Genet., 47 (2015),pp. 469-478
|
[42] |
Lin, S., Staahl, B.T., Alla, R.K. et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery eLife, 3 (2014),p. e04766
|
[43] |
Ma, S., Chang, J., Wang, X. et al. Sci. Rep., 4 (2014),p. 4489
|
[44] |
Maddalo, D., Manchado, E., Concepcion, C.P. et al. Nature, 516 (2014),pp. 423-427
|
[45] |
Mali, P., Yang, L.H., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[46] |
Maruyama, T., Dougan, S.K., Truttmann, M.C. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining Nat. Biotechnol., 33 (2015),pp. 538-542
|
[47] |
Mashiko, D., Young, S.A., Muto, M. et al. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes Dev. Growth Differ., 56 (2014),pp. 122-129
|
[48] |
Matsunaga, T., Yamashita, J.K. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 Biochem. Biophys. Res. Commun., 444 (2014),pp. 158-163
|
[49] |
Nihongaki, Y., Yamamoto, S., Kawano, F. et al. CRISPR-Cas9-based photoactivatable transcription system Chem. Biol., 22 (2015),pp. 169-174
|
[50] |
Nishimasu, H., Ran, F.A., Hsu, P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA Cell, 156 (2014),pp. 935-949
|
[51] |
O'Connell, M.R., Oakes, B.L., Sternberg, S.H. et al. Programmable RNA recognition and cleavage by CRISPR/Cas9 Nature, 516 (2014),pp. 263-266
|
[52] |
Ota, S., Hisano, Y., Ikawa, Y. et al. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish Genes Cells, 19 (2014),pp. 555-564
|
[53] |
Parikh, B.A., Beckman, D.L., Patel, S.J. et al. Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing PLoS One, 10 (2015),p. e0116484
|
[54] |
Pefanis, E., Wang, J.G., Rothschild, G. et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity Cell, 161 (2015),pp. 774-789
|
[55] |
Platt, R.J., Chen, S.D., Zhou, Y. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling Cell, 159 (2014),pp. 440-455
|
[56] |
Polstein, L.R., Gersbach, C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation Nat. Chem. Biol., 11 (2015),pp. 198-200
|
[57] |
Qin, W., Dion, S.L., Kutny, P.M. et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease Genetics, 200 (2015),pp. 423-430
|
[58] |
Qin, W.N., Kutny, P., Dion, S. et al. One-step generation of mice carrying gene-edited alleles by the CRISPR/Cas-mediated genome engineering with high efficiency Transgenic Res., 23 (2014)
|
[59] |
Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
|
[60] |
Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
|
[61] |
Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
|
[62] |
Ratz, M., Testa, I., Hell, S.W. et al. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells Sci. Rep., 5 (2015),p. 9592
|
[63] |
Rodriguez, E., Keiser, M., McLoughlin, H. et al. AAV-CRISPR: a new therapeutic approach to nucleotide repeat diseases Mol. Ther., 22 (2014)
|
[64] |
Rojas-Fernandez, A., Herhaus, L., Macartney, T. et al. Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9 Sci. Rep., 5 (2015),p. 9811
|
[65] |
Sapranauskas, R., Gasiunas, G., Fremaux, C. et al. Nucleic Acids Res., 39 (2011),pp. 9275-9282
|
[66] |
Senis, E., Fatouros, C., Grosse, S. et al. An AAV vector toolbox for CRISPR/Cas9-mediated genome engineering Hum. Gene Ther., 25 (2014),pp. A24-A25
|
[67] |
Seruggia, D., Fernandez, A., Cantero, M. et al. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis Nucleic Acids Res., 43 (2015),pp. 4855-4867
|
[68] |
Shen, B., Zhang, J., Wu, H. et al. Cell Res., 23 (2013),pp. 720-723
|
[69] |
Shen, B., Zhang, W., Zhang, J. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects Nat. Methods, 11 (2014),pp. 399-402
|
[70] |
Singh, P., Schimenti, J.C., Bolcun-Filas, E. A mouse geneticist's practical guide to CRISPR applications Genetics, 199 (2015),pp. 1-15
|
[71] |
Swiech, L., Heidenreich, M., Banerjee, A. et al. Nat. Biotechnol., 33 (2015),pp. 102-106
|
[72] |
Tanenbaum, M.E., Gilbert, L.A., Qi, L.S. et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging Cell, 159 (2014),pp. 635-646
|
[73] |
Urnov, F.D., Miller, J.C., Lee, Y.L. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases Nature, 435 (2005),pp. 646-651
|
[74] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[75] |
Wang, J.W., Wang, A., Li, K.Y. et al. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning BioTechniques, 58 (2015),pp. 161-170
|
[76] |
Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
|
[77] |
Westra, E.R., Semenova, E., Datsenko, K.A. et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition PLoS Genet., 9 (2013),p. e1003742
|
[78] |
Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
|
[79] |
Wu, Y.X., Liang, D., Wang, Y.H. et al. Cell Stem Cell, 13 (2013),pp. 659-662
|
[80] |
Xu, J., Ren, X., Sun, J. et al. J. Genet. Genomics, 42 (2015),pp. 141-149
|
[81] |
Xue, W., Chen, S., Yin, H. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver Nature, 514 (2014),pp. 380-384
|
[82] |
Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
|
[83] |
Yin, H., Xue, W., Chen, S. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype Nat. Biotechnol., 32 (2014),pp. 551-553
|
[84] |
Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
|
[85] |
Zhang, L.Q., Jia, R.R., Palange, N.J. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9 PLoS One, 10 (2015),p. e0120396
|
[86] |
Zhang, X.X. Urgency to rein in the gene-editing technology Protein Cell, 6 (2015)
|
[87] |
Zhang, Z.Q., Xu, K., Xin, Y. et al. An efficient method for multiple site-directed mutagenesis using type IIs restriction enzymes Anal. Biochem., 476 (2015),pp. 26-28
|
[88] |
Zhong, H., Chen, Y.Y., Li, Y.M. et al. Sci. Rep., 5 (2015),p. 8366
|
[89] |
Zhou, J., Shen, B., Zhang, W. et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering Int. J. Biochem. Cell Biol., 46 (2014),pp. 49-55
|
[90] |
Zhu, X., Xu, Y., Yu, S. et al. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system Sci. Rep., 4 (2014),p. 6420
|