5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 11
Nov.  2016
Turn off MathJax
Article Contents

Identification of microRNAs in rice root in response to nitrate and ammonium

doi: 10.1016/j.jgg.2015.12.002
More Information
  • Corresponding author: E-mail address: ccchu@genetics.ac.cn (Chengcai Chu)
  • Received Date: 2015-10-21
  • Accepted Date: 2015-12-18
  • Rev Recd Date: 2015-12-15
  • Available Online: 2016-05-24
  • Publish Date: 2016-11-20
  • Nitrate and ammonium are two major nitrogen (N) sources for higher plants, but they differ in utilization and signaling. MicroRNAs (miRNAs) play an essential role in N signal transduction; however, knowledge remains limited about the regulatory role of miRNAs responsive to different N sources, especially in crop plants. To get global overview on miRNAs involved in N response in rice, we performed high-throughput small RNA-sequencing under different nitrate and ammonium treatments. The results demonstrated that only 16 and 11 miRNAs were significantly induced by nitrate and ammonium under short-term treatment, respectively. However, 60 differentially expressed miRNAs were found between nitrate and ammonium under long-term cultivation. These results suggested that miRNA response greatly differentiates between nitrate and ammonium treatments. Furthermore, 44 miRNAs were found to be differentially expressed between high- and low-N conditions. Our study reveals comprehensive expression profiling of miRNAs responsive to different N sources and different N treatments, which advances our understanding on the regulation of different N signaling and homeostasis mediated by miRNAs.
  • loading
  • [1]
    Abdel-Ghany, S.E., Pilon, M. J. Biol. Chem., 283 (2008),pp. 15932-15945
    [2]
    Achard, P., Herr, A., Baulcombe, D.C. et al. Modulation of floral development by a gibberellin-regulated microRNA Development, 131 (2004),pp. 3357-3365
    [3]
    Allen, E., Xie, Z.X., Gustafson, A.M. et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants Cell, 121 (2005),pp. 207-221
    [4]
    Bari, R., Pant, B.D., Stitt, M. et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants Plant Physiol., 141 (2006),pp. 988-999
    [5]
    Burkhead, J.L., Reynolds, K.A.G., Abdel-Ghany, S.E. et al. Copper homeostasis New Phytol., 182 (2009),pp. 799-816
    [6]
    Cai, H.M., Lu, Y.G., Xie, W.B. et al. Transcriptome response to nitrogen starvation in rice J. Biosci., 37 (2012),pp. 731-747
    [7]
    Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
    [8]
    Chen, Z.X., Li, F.L., Yang, S.N. et al. PLoS One, 8 (2013),p. e82844
    [9]
    Chiou, T.J., Aung, K., Lin, S.I. et al. Plant Cell, 18 (2006),pp. 412-421
    [10]
    Delhaize, E., Randall, P.J. Plant Physiol., 107 (1995),pp. 207-213
    [11]
    Duan, K., Yi, K.K., Dang, L. et al. Plant J., 54 (2008),pp. 965-975
    [12]
    Fujii, H., Chiou, T.J., Lin, S.I. et al. Curr. Biol., 15 (2005),pp. 2038-2043
    [13]
    Gifford, M.L., Dean, A., Gutierrez, R.A. et al. Cell-specific nitrogen responses mediate developmental plasticity Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 803-808
    [14]
    Guo, H.S., Xie, Q., Fei, J.F. et al. Plant Cell, 17 (2005),pp. 1376-1386
    [15]
    Gutierrez, R.A. Systems biology for enhanced plant nitrogen nutrition Science, 336 (2012),pp. 1673-1675
    [16]
    Gutierrez, R.A., Lejay, L.V., Dean, A. et al. Genome Biol., 8 (2007),p. R7
    [17]
    Ha, M., Kim, V.N. Regulation of microRNA biogenesis Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 509-524
    [18]
    Hafner, M., Landgraf, P., Ludwig, J. et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing Methods, 44 (2008),pp. 3-12
    [19]
    He, H., Liang, G., Li, Y. et al. Plant Physiol., 164 (2014),pp. 853-865
    [20]
    Heisel, S.E., Zhang, Y.J., Allen, E. et al. Characterization of unique small RNA populations from rice grain PLoS One, 3 (2008),p. e2871
    [21]
    Ho, C.H., Lin, S.H., Hu, H.C. et al. CHL1 functions as a nitrate sensor in plant Cell, 138 (2009),pp. 1184-1194
    [22]
    Ho, C.H., Tsay, Y.F. Nitrate, ammonium, and potassium sensing and signaling Curr. Opin. Plant Biol., 13 (2010),pp. 604-610
    [23]
    Hu, B., Wang, W., Deng, K. et al. MicroRNA399 is involved in multiple nutrient starvation responses in rice Front. Plant Sci., 6 (2015),p. 188
    [24]
    Hu, B., Wang, W., Ou, S. et al. Nat. Genet., 47 (2015),pp. 834-838
    [25]
    Hu, B., Zhu, C.G., Li, F. et al. Plant Physiol., 156 (2011),pp. 1101-1115
    [26]
    Jeong, D.H., Green, P.J. The role of rice microRNAs in abiotic stress responses J. Plant Biol., 56 (2013),pp. 187-197
    [27]
    Jeong, D.H., Park, S., Zhai, J. et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage Plant Cell, 23 (2011),pp. 4185-4207
    [28]
    Kant, S., Bi, Y.M., Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency J. Exp. Bot., 62 (2011),pp. 1499-1509
    [29]
    Kant, S., Peng, M., Rothstein, S.J. PLoS Genet., 7 (2011),p. e1002021
    [30]
    Kasschau, K.D., Fahlgren, N., Chapman, E.J. et al. PLoS Biol., 5 (2007),pp. 479-493
    [31]
    Kawashima, C.G., Yoshimoto, N., Maruyama-Nakashita, A. et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types Plant J., 57 (2009),pp. 313-321
    [32]
    Kehr, J. Systemic regulation of mineral homeostasis by microRNAs Front. Plant Sci., 4 (2013),p. 145
    [33]
    Khraiwesh, B., Zhu, J.K., Zhu, J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants Biochim. Biophys. Acta, 1819 (2012),pp. 137-148
    [34]
    Kidner, C.A. The many roles of small RNAs in leaf development J. Genet. Genomics, 37 (2010),pp. 13-21
    [35]
    Lauressergues, D., Couzigou, J.M., San Clemente, H. et al. Primary transcripts of microRNAs encode regulatory peptides Nature, 520 (2015),pp. 90-93
    [36]
    Li, J., Reichel, M., Li, Y. et al. The functional scope of plant microRNA-mediated silencing Trends Plant Sci., 19 (2014),pp. 750-756
    [37]
    Li, L.Y., Yang, C., He, Y. et al. Expression patterns of microRNAs in different organs and developmental stages of a superhybrid rice LYP9 and its parental lines Plant Biol., 16 (2014),pp. 878-887
    [38]
    Liang, G., He, H., Yu, D.Q. PLoS One, 7 (2012),p. e48951
    [39]
    Liang, G., Yang, F., Yu, D. Plant J., 62 (2010),pp. 1046-1057
    [40]
    Lin, W.Y., Huang, T.K., Chiou, T.J. Plant Cell, 25 (2013),pp. 4061-4074
    [41]
    Mallory, A.C., Bartel, D.P., Bartel, B. Plant Cell, 17 (2005),pp. 1360-1375
    [42]
    Mallory, A.C., Vaucheret, H. Functions of microRNAs and related small RNAs in plants Nat. Genet., 8 (2006),pp. S31-S36
    [43]
    Matzke, M.A., Mosher, R.A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity Nat. Rev. Genet., 15 (2014),pp. 394-408
    [44]
    Medici, A., Krouk, G. The primary nitrate response: a multifaceted signalling pathway J. Exp. Bot., 65 (2014),pp. 5567-5576
    [45]
    Nakamura, A., Umemura, I., Gomi, K. et al. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein Plant J., 46 (2006),pp. 297-306
    [46]
    Nischal, L., Mohsin, M., Khan, I. et al. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes PLoS One, 7 (2012),p. e50261
    [47]
    Palenchar, P.M., Kouranov, A., Lejay, L.V. et al. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants Genome Biol., 5 (2004),p. R91
    [48]
    Pant, B.D., Musialak-Lange, M., Nuc, P. et al. Plant Physiol., 150 (2009),pp. 1541-1555
    [49]
    Peng, T., Lv, Q., Zhang, J. et al. J. Exp. Bot., 62 (2011),pp. 4943-4954
    [50]
    Popova, O.V., Dinh, H.Q., Aufsatz, W. et al. Mol. Plant, 6 (2013),pp. 396-410
    [51]
    Rajagopalan, R., Vaucheret, H., Trejo, J. et al. Genes Dev., 20 (2006),pp. 3407-3425
    [52]
    Ruby, J.G., Jan, C., Player, C. et al. Cell, 127 (2006),pp. 1193-1207
    [53]
    Scheible, W.R., Morcuende, R., Czechowski, T. et al. Plant Physiol., 136 (2004),pp. 2483-2499
    [54]
    Schwab, R., Palatnik, J.F., Riester, M. et al. Specific effects of microRNAs on the plant transcriptome Dev. Cell, 8 (2005),pp. 517-527
    [55]
    Shin, R., Berg, R.H., Schachtman, D.P. Plant Cell Physiol., 46 (2005),pp. 1350-1357
    [56]
    Sunkar, R., Girke, T., Jain, P.K. et al. Cloning and characterization of microRNAs from rice Plant Cell, 17 (2005),pp. 1397-1411
    [57]
    Sunkar, R., Kapoor, A., Zhu, J.K. Plant Cell, 18 (2006),pp. 2051-2065
    [58]
    Sunkar, R., Zhu, J.K. Plant Cell, 16 (2004),pp. 2001-2019
    [59]
    Tang, M.F., Mao, D.H., Xu, L.W. et al. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings BMC Genomics, 15 (2014),p. 835
    [60]
    Tian, C., Zuo, Z., Qiu, J.L. Identification and characterization of ABA-responsive microRNAs in rice J. Genet. Genomics, 42 (2015),pp. 393-402
    [61]
    Trevisan, S., Nonis, A., Begheldo, M. et al. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings Plant Cell Environ., 35 (2012),pp. 1137-1155
    [62]
    Valdes-Lopez, O., Yang, S.S., Aparicio-Fabre, R. et al. New Phytol., 187 (2010),pp. 805-818
    [63]
    Vidal, E.A., Araus, V., Lu, C. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 4477-4482
    [64]
    Vidal, E.A., Moyano, T.C., Krouk, G. et al. BMC Genomics, 14 (2013),p. 701
    [65]
    Wang, J.W., Wang, L.J., Mao, Y.B. et al. Plant Cell, 17 (2005),pp. 2204-2216
    [66]
    Wang, W., Zhang, L., Li, H. et al. Recent progress in molecular dissection of nutrient uptake and transport in rice Sci. Sin. Vitae, 45 (2015),pp. 569-590
    [67]
    Wang, Y., Zhang, C., Hao, Q. et al. Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes PLoS One, 8 (2013),p. e67423
    [68]
    Xie, M., Yu, B. siRNA-directed DNA methylation in plants Curr. Genomics, 16 (2015),pp. 23-31
    [69]
    Xu, G., Fan, X., Miller, A.J. Plant nitrogen assimilation and use efficiency Annu. Rev. Plant Biol., 63 (2012),pp. 153-182
    [70]
    Xu, Z.H., Zhong, S.H., Li, X.H. et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots PLoS One, 6 (2011),p. e28009
    [71]
    Yan, Y., Wang, H., Hamera, S. et al. miR444a has multiple functions in the rice nitrate-signaling pathway Plant J., 78 (2014),pp. 44-55
    [72]
    Yi, S., Gao, Z.X., Zhao, H. et al. BMC Genomics, 14 (2013),p. 754
    [73]
    Zhang, H.M., Forde, B.G. J. Exp. Bot., 51 (2000),pp. 51-59
    [74]
    Zhang, H.M., Tang, K., Wang, B.S. et al. Protocol: a beginner's guide to the analysis of RNA-directed DNA methylation in plants Plant Methods, 10 (2014),p. 18
    [75]
    Zhao, M., Ding, H., Zhu, J.K. et al. New Phytol., 190 (2011),pp. 906-915
    [76]
    Zhao, M., Tai, H.H., Sun, S.Z. et al. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency PLoS One, 7 (2012),p. e29669
    [77]
    Zhao, Y.P., Xu, Z.H., Mo, Q.C. et al. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize Ann. Bot., 112 (2013),pp. 633-642
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return