[1] |
Adie, E.A., Adams, R.R., Evans, K.L. et al. SUSPECTS: enabling fast and effective prioritization of positional candidates Bioinformatics, 22 (2006),pp. 773-774
|
[2] |
Aerts, S., Lambrechts, D., Maity, S. et al. Gene prioritization through genomic data fusion Nat. Biotechnol., 24 (2006),pp. 537-544
|
[3] |
Akavia, U.D., Litvin, O., Kim, J. et al. An integrated approach to uncover drivers of cancer Cell, 143 (2010),pp. 1005-1017
|
[4] |
Alon, N., Yuster, R., Zwick, U. Color-coding J. ACM, 42 (1995),pp. 844-856
|
[5] |
Amar, D., Shamir, R. Constructing module maps for integrated analysis of heterogeneous biological networks Nucleic Acids Res., 42 (2014),pp. 4208-4219
|
[6] |
Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. Nucleic Acids Res., 43 (2015),pp. D789-D798
|
[7] |
Backes, C., Rurainski, A., Klau, G.W. et al. An integer linear programming approach for finding deregulated subgraphs in regulatory networks Nucleic Acids Res., 40 (2012),p. e43
|
[8] |
Bader, J.S. Greedily building protein networks with confidence Bioinformatics, 19 (2003),pp. 1869-1874
|
[9] |
Bair, E., Tibshirani, R. Semi-supervised methods to predict patient survival from gene expression data PLoS Biol., 2 (2004),p. e108
|
[10] |
Barabási, A.-L., Gulbahce, N., Loscalzo, J. Network medicine: a network-based approach to human disease Nat. Rev. Genet., 12 (2011),pp. 56-68
|
[11] |
Barrenas, F., Chavali, S., Holme, P. et al. Network properties of complex human disease genes identified through genome-wide association studies PLoS One, 4 (2009),p. e8090
|
[12] |
Bastian, M., Heymann, S., Jacomy, M. Gephi: an open source software for exploring and manipulating networks ICWSM, 8 (2009),pp. 361-362
|
[13] |
Batagelj, V., Mrvar, A.
|
[14] |
Bauer-Mehren, A., Bundschus, M., Rautschka, M. et al. Gene-disease network analysis reveals functional modules in Mendelian, complex and environmental diseases PLoS One, 6 (2011),p. e20284
|
[15] |
Bauer-Mehren, A., Rautschka, M., Sanz, F. et al. DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks Bioinformatics, 26 (2010),pp. 2924-2926
|
[16] |
Beagley, N., Stratton, K.G., Webb-Robertson, B.-J.M. VIBE 2.0: visual integration for Bayesian evaluation Bioinformatics, 26 (2010),pp. 280-282
|
[17] |
Becker, K.G., Barnes, K.C., Bright, T.J. et al. The genetic association database Nat. Genet., 36 (2004),pp. 431-432
|
[18] |
Beisser, D., Klau, G.W., Dandekar, T. et al. BioNet: an R-Package for the functional analysis of biological networks Bioinformatics, 26 (2010),pp. 1129-1130
|
[19] |
Berger, S.I., Iyengar, R., Ma’ayan, A. AVIS: AJAX viewer of interactive signaling networks Bioinformatics, 23 (2007),pp. 2803-2805
|
[20] |
Bonetta, L. Protein–protein interactions: interactome under construction Nature, 468 (2010),pp. 851-854
|
[21] |
Breitkreutz, B.-J., Stark, C., Tyers, M. Osprey: a network visualization system Genome Biol., 4 (2003),p. R22
|
[22] |
Brown, K.R., Jurisica, I. Online predicted human interaction database Bioinformatics, 21 (2005),pp. 2076-2082
|
[23] |
Brown, K.R., Otasek, D., Ali, M. et al. NAViGaTOR: network analysis, visualization and graphing Toronto Bioinformatics, 25 (2009),pp. 3327-3329
|
[24] |
Bundschus, M., Dejori, M., Stetter, M. et al. Extraction of semantic biomedical relations from text using conditional random fields BMC Bioinformatics, 9 (2008),p. 207
|
[25] |
Butte, A.J. Medicine. The ultimate model organism Science, 320 (2008),pp. 325-327
|
[26] |
Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R. et al. The BioGRID interaction database: 2015 update Nucleic Acids Res., 43 (2015),pp. D470-D478
|
[27] |
Chen, H., Zhang, Z. Similarity-based methods for potential human microRNA-disease association prediction BMC Med. Genomics, 6 (2013),p. 12
|
[28] |
Chen, J., Aronow, B.J., Jegga, A.G. Disease candidate gene identification and prioritization using protein interaction networks BMC Bioinformatics, 10 (2009),p. 73
|
[29] |
Chen, J., Xu, H., Aronow, B.J. et al. Improved human disease candidate gene prioritization using mouse phenotype BMC Bioinformatics, 8 (2007),p. 392
|
[30] |
Chen, L., Xuan, J., Riggins, R.B. et al. Identifying protein interaction subnetworks by a bagging Markov random field-based method Nucleic Acids Res., 41 (2013),p. e42
|
[31] |
Chuang, H.Y., Lee, E., Liu, Y.T. et al. Network-based classification of breast cancer metastasis Mol. Syst. Biol., 3 (2007),p. 140
|
[32] |
Chuang, H.Y., Rassenti, L., Salcedo, M. et al. Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression Blood, 120 (2012),pp. 2639-2649
|
[33] |
Colak, D., Al-Dhalaan, H., Nester, M. et al. Genomic and transcriptomic analyses distinguish classic Rett and Rett-like syndrome and reveals shared altered pathways Genomics, 97 (2011),pp. 19-28
|
[34] |
Colak, D., Chishti, M.A., Al-Bakheet, A.B. et al. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old Mol. Cancer, 9 (2010),p. 146
|
[35] |
Colak, D., Kaya, N., Al-Zahrani, J. et al. Left ventricular global transcriptional profiling in human end-stage dilated cardiomyopathy Genomics, 94 (2009),pp. 20-31
|
[36] |
Costa Pereira, J., Coviello, E., Doyle, G. et al. On the role of correlation and abstraction in cross-modal multimedia retrieval IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014),pp. 521-535
|
[37] |
Cotney, J., Muhle, R.A., Sanders, S.J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment Nat. Commun., 6 (2015),p. 6404
|
[38] |
Cozzini, A., Jasra, A., Montana, G. Model-based clustering with gene ranking using penalized mixtures of heavy-tailed distributions J. Bioinform. Comput. Biol., 11 (2013),p. 1341007
|
[39] |
Croft, D., Mundo, A.F., Haw, R. et al. The reactome pathway knowledgebase Nucleic Acids Res., 42 (2014),pp. D472-D477
|
[40] |
Dal Moro, F., Abate, A., Lanckriet, G.R. et al. A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines Kidney Int., 69 (2006),pp. 157-160
|
[41] |
Dannenfelser, R., Clark, N.R., Ma'ayan, A. Genes2FANs: connecting genes through functional association networks BMC Bioinformatics, 13 (2012),p. 156
|
[42] |
Dao, P., Wang, K., Collins, C. et al. Optimally discriminative subnetwork markers predict response to chemotherapy Bioinformatics, 27 (2011),pp. i205-i213
|
[43] |
Daraselia, N., Yuryev, A., Egorov, S. et al. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks BMC Bioinformatics, 8 (2007),p. 243
|
[44] |
Dave, S.S. Gene expression signatures and outcome prediction in mature B-cell malignancies Curr. Treat Options Oncol., 7 (2006),pp. 261-269
|
[45] |
Dave, S.S., Fu, K., Wright, G.W. et al. Molecular diagnosis of Burkitt's lymphoma N. Engl. J. Med., 354 (2006),pp. 2431-2442
|
[46] |
Davis, A.P., Grondin, C.J., Lennon-Hopkins, K. et al. The comparative toxicogenomics database's 10th year anniversary: update 2015 Nucleic Acids Res., 43 (2015),pp. D914-D920
|
[47] |
de Matos Simoes, R., Emmert-Streib, F. Bagging statistical network inference from large-scale gene expression data PLoS One, 7 (2012),p. e33624
|
[48] |
Dezső, Z., Nikolsky, Y., Nikolskaya, T. et al. Identifying disease-specific genes based on their topological significance in protein networks BMC Syst. Biol., 3 (2009),p. 36
|
[49] |
Diez, D., Wheelock, A.M., Goto, S. et al. The use of network analyses for elucidating mechanisms in cardiovascular disease Mol. Biosyst., 6 (2010),pp. 289-304
|
[50] |
Ding, Y., Chen, M., Liu, Z. et al. atBioNet–an integrated network analysis tool for genomics and biomarker discovery BMC Genomics, 13 (2012),p. 325
|
[51] |
Enright, A.J., Van Dongen, S., Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families Nucleic Acids Res., 30 (2002),pp. 1575-1584
|
[52] |
Eppig, J.T., Blake, J.A., Bult, C.J. et al. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse Nucleic Acids Res., 40 (2012),pp. D881-D886
|
[53] |
Ergun, A., Lawrence, C.A., Kohanski, M.A. et al. A network biology approach to prostate cancer Mol. Syst. Biol., 3 (2007),p. 82
|
[54] |
Erten, S., Chowdhury, S.A., Guan, X. et al. Identifying stage-specific protein subnetworks for colorectal cancer BMC Proc., 6 (2012),p. S1
|
[55] |
Ewing, R.M., Chu, P., Elisma, F. et al. Large-scale mapping of human protein–protein interactions by mass spectrometry Mol. Syst. Biol., 3 (2007),p. 89
|
[56] |
Finak, G., Bertos, N., Pepin, F. et al. Stromal gene expression predicts clinical outcome in breast cancer Nat. Med., 14 (2008),pp. 518-527
|
[57] |
Formstecher, E., Aresta, S., Collura, V. et al. Genome Res., 15 (2005),pp. 376-384
|
[58] |
Franceschini, A., Szklarczyk, D., Frankild, S. et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration Nucleic Acids Res., 41 (2013),pp. D808-D815
|
[59] |
Franke, L., Van Bakel, H., Fokkens, L. et al. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes Am. J. Hum. Genet., 78 (2006),p. 1011
|
[60] |
Frey, B.J., Dueck, D. Clustering by passing messages between data points Science, 315 (2007),pp. 972-976
|
[61] |
Gao, S., Wang, X. Identification of highly synchronized subnetworks from gene expression data BMC Bioinformatics, 14 (2013),p. S5
|
[62] |
Garcia-Garcia, J., Guney, E., Aragues, R. et al. Biana: a software framework for compiling biological interactions and analyzing networks BMC Bioinformatics, 11 (2010),p. 56
|
[63] |
Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma Nature, 436 (2005),pp. 117-122
|
[64] |
Gillis, J., Pavlidis, P. “Guilt by association” is the exception rather than the rule in gene networks PLoS Comput. Biol., 8 (2012),p. e1002444
|
[65] |
Glaab, E., Baudot, A., Krasnogor, N. et al. EnrichNet: network-based gene set enrichment analysis Bioinformatics, 28 (2012),pp. i451-i457
|
[66] |
Glass, K., Huttenhower, C., Quackenbush, J. et al. Passing messages between biological networks to refine predicted interactions PLoS One, 8 (2013),p. e64832
|
[67] |
Goh, K.I., Cusick, M.E., Valle, D. et al. The human disease network Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 8685-8690
|
[68] |
Green, P.J., Richardson, S. Modelling heterogeneity with and without the dirichlet process Scand. J. Stat., 28 (2001),pp. 355-375
|
[69] |
Güldener, U., Münsterkötter, M., Oesterheld, M. et al. MPact: the MIPS protein interaction resource on yeast Nucleic Acids Res., 34 (2006),pp. D436-D441
|
[70] |
Guney, E., Oliva, B. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization PLoS One, 7 (2012),p. e43557
|
[71] |
Guo, Z., Li, Y., Gong, X. et al. Edge-based scoring and searching method for identifying condition-responsive protein–protein interaction sub-network Bioinformatics, 23 (2007),pp. 2121-2128
|
[72] |
Haibe-Kains, B., Olsen, C., Djebbari, A. et al. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks Nucleic Acids Res., 40 (2012),pp. D866-D875
|
[73] |
Han, K., Park, B., Kim, H. et al. HPID: the Human Protein Interaction Database Bioinformatics, 20 (2004),pp. 2466-2470
|
[74] |
Hayasaka, S., Hugenschmidt, C.E., Laurienti, P.J. A network of genes, genetic disorders, and brain areas PLoS One, 6 (2011),p. e20907
|
[75] |
He, Z., Zhang, J., Shi, X.-H. et al. Predicting drug-target interaction networks based on functional groups and biological features PLoS One, 5 (2010),p. e9603
|
[76] |
Hedenfalk, I., Duggan, D., Chen, Y. et al. Gene-expression profiles in hereditary breast cancer N. Engl. J. Med., 344 (2001),pp. 539-548
|
[77] |
Hidalgo, C.A., Blumm, N., Barabasi, A.L. et al. A dynamic network approach for the study of human phenotypes PLoS Comput. Biol., 5 (2009),p. e1000353
|
[78] |
Ho, C.Y., Seidman, C.E. A contemporary approach to hypertrophic cardiomyopathy Circulation, 113 (2006),pp. e858-862
|
[79] |
Hooper, S.D., Bork, P. Medusa: a simple tool for interaction graph analysis Bioinformatics, 21 (2005),pp. 4432-4433
|
[80] |
Hu, G., Agarwal, P. Human disease-drug network based on genomic expression profiles PLoS One, 4 (2009),p. e6536
|
[81] |
Hu, Z., Mellor, J., Wu, J. et al. VisANT: an online visualization and analysis tool for biological interaction data BMC Bioinformatics, 5 (2004),p. 17
|
[82] |
Huttenhower, C., Schroeder, M., Chikina, M.D. et al. The Sleipnir library for computational functional genomics Bioinformatics, 24 (2008),pp. 1559-1561
|
[83] |
Ideker, T., Ozier, O., Schwikowski, B. et al. Discovering regulatory and signalling circuits in molecular interaction networks Bioinformatics (2002),pp. S233-S240
|
[84] |
Ideker, T., Sharan, R. Protein networks in disease Genome Res., 18 (2008),pp. 644-652
|
[85] |
Isserlin, R., El-Badrawi, R.A., Bader, G.D. The biomolecular interaction network database in PSI-MI 2.5 Database (Oxford), 2011 (2011)
|
[86] |
Jensen, F.V.
|
[87] |
Jia, P., Zheng, S., Long, J. et al. dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks Bioinformatics, 27 (2011),pp. 95-102
|
[88] |
Jiang, B., Gribskov, M. Assessment of subnetwork detection methods for breast cancer Cancer Inform., 13 (2014),p. 15
|
[89] |
Jiang, C., Xuan, Z., Zhao, F. et al. TRED: a transcriptional regulatory element database, new entries and other development Nucleic Acids Res., 35 (2007),pp. D137-D140
|
[90] |
Joyce, A.R., Palsson, B.O. The model organism as a system: integrating ‘omics’ data sets Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 198-210
|
[91] |
Kacprowski, T., Doncheva, N.T., Albrecht, M. NetworkPrioritizer: a versatile tool for network-based prioritization of candidate disease genes or other molecules Bioinformatics, 29 (2013),pp. 1471-1473
|
[92] |
Kanehisa, M., Goto, S., Sato, Y. et al. Data, information, knowledge and principle: back to metabolism in KEGG Nucleic Acids Res., 42 (2014),pp. D199-D205
|
[93] |
Kang, H.J., Kawasawa, Y.I., Cheng, F. et al. Spatio-temporal transcriptome of the human brain Nature, 478 (2011),pp. 483-489
|
[94] |
Kerrien, S., Orchard, S., Montecchi-Palazzi, L. et al. Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions BMC Biol., 5 (2007),p. 44
|
[95] |
Kim, Y., Kim, T.-K., Kim, Y. et al. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data Bioinformatics, 27 (2011),pp. 391-398
|
[96] |
King, A.D., Pržulj, N., Jurisica, I. Bioinformatics, 20 (2004),pp. 3013-3020
|
[97] |
Kirk, P., Griffin, J.E., Savage, R.S. et al. Bayesian correlated clustering to integrate multiple datasets Bioinformatics, 28 (2012),pp. 3290-3297
|
[98] |
Köhler, J., Baumbach, J., Taubert, J. et al. Graph-based analysis and visualization of experimental results with ONDEX Bioinformatics, 22 (2006),pp. 1383-1390
|
[99] |
Köhler, S., Bauer, S., Horn, D. et al. Walking the interactome for prioritization of candidate disease genes Am. J. Hum. Genet., 82 (2008),p. 949
|
[100] |
Komurov, K., Dursun, S., Erdin, S. et al. NetWalker: a contextual network analysis tool for functional genomics BMC Genomics, 13 (2012),p. 282
|
[101] |
Komurov, K., White, M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network Mol. Syst. Biol., 3 (2007),p. 110
|
[102] |
Lage, K., Karlberg, E.O., Størling, Z.M. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders Nat. Biotechnol., 25 (2007),pp. 309-316
|
[103] |
Lanckriet, G.R., De Bie, T., Cristianini, N. et al. A statistical framework for genomic data fusion Bioinformatics, 20 (2004),pp. 2626-2635
|
[104] |
Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis BMC Bioinformatics, 9 (2008),p. 559
|
[105] |
Larkin, J.E., Frank, B.C., Gaspard, R.M. et al. Cardiac transcriptional response to acute and chronic angiotensin II treatments Physiol. Genomics, 18 (2004),pp. 152-166
|
[106] |
Le, D.H., Kwon, Y.K. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization Comput. Biol. Chem., 44 (2013),pp. 1-8
|
[107] |
Lee, D.S., Park, J., Kay, K.A. et al. The implications of human metabolic network topology for disease comorbidity Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 9880-9885
|
[108] |
Lee, I., Blom, U.M., Wang, P.I. et al. Prioritizing candidate disease genes by network-based boosting of genome-wide association data Genome Res., 21 (2011),pp. 1109-1121
|
[109] |
Lee, I., Date, S.V., Adai, A.T. et al. A probabilistic functional network of yeast genes Science, 306 (2004),pp. 1555-1558
|
[110] |
Lee, W.P., Tzou, W.S. Computational methods for discovering gene networks from expression data Brief. Bioinform., 10 (2009),pp. 408-423
|
[111] |
Li, G.-L., Xu, X.-H., Wang, B.-A. et al. Analysis of protein-protein interaction network and functional modules on primary osteoporosis Eur. J. Med. Res., 19 (2014),p. 15
|
[112] |
Li, Y., Agarwal, P. A pathway-based view of human diseases and disease relationships PLoS One, 4 (2009),p. e4346
|
[113] |
Licata, L., Briganti, L., Peluso, D. et al. MINT, the molecular interaction database: 2012 update Nucleic Acids Res., 40 (2012),pp. D857-D861
|
[114] |
Lichtenstein, I., Charleston, M.A., Caetano, T.S. et al. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies BMC Bioinformatics, 14 (2013),p. 59
|
[115] |
Linghu, B., Snitkin, E.S., Hu, Z. et al. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network Genome Biol., 10 (2009),p. R91
|
[116] |
Liu, G., Wong, L., Chua, H.N. Complex discovery from weighted PPI networks Bioinformatics, 25 (2009),pp. 1891-1897
|
[117] |
Liu, K.Q., Liu, Z.P., Hao, J.K. et al. Identifying dysregulated pathways in cancers from pathway interaction networks BMC Bioinformatics, 13 (2012),p. 126
|
[118] |
Liu, Y., Koyuturk, M., Barnholtz-Sloan, J.S. et al. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases BMC Syst. Biol., 6 (2012),p. 65
|
[119] |
Loscalzo, J., Kohane, I., Barabasi, A.L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology Mol. Syst. Biol., 3 (2007),p. 124
|
[120] |
Lu, L.J., Xia, Y., Paccanaro, A. et al. Assessing the limits of genomic data integration for predicting protein networks Genome Res., 15 (2005),pp. 945-953
|
[121] |
Lu, M., Zhang, Q., Deng, M. et al. An analysis of human microRNA and disease associations PLoS One, 3 (2008),p. e3420
|
[122] |
Macropol, K., Can, T., Singh, A.K. RRW: repeated random walks on genome-scale protein networks for local cluster discovery BMC Bioinformatics, 10 (2009),p. 283
|
[123] |
Madhamshettiwar, P.B., Maetschke, S.R., Davis, M.J. et al. RMaNI: regulatory module network inference framework BMC Bioinformatics, 14 (2013),p. S14
|
[124] |
Mi, H., Muruganujan, A., Thomas, P.D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees Nucleic Acids Res., 41 (2013),pp. D377-D386
|
[125] |
Mitra, K., Carvunis, A.-R., Ramesh, S.K. et al. Integrative approaches for finding modular structure in biological networks Nat. Rev. Genet., 14 (2013),pp. 719-732
|
[126] |
Narayanan, M., Vetta, A., Schadt, E.E. et al. Simultaneous clustering of multiple gene expression and physical interaction datasets PLoS Comput. Biol., 6 (2010),p. e1000742
|
[127] |
Nayak, L., Tunga, H., De, R.K. Disease co-morbidity and the human Wnt signaling pathway: a network-wise study OMICS, 17 (2013),pp. 318-337
|
[128] |
Nepusz, T., Yu, H., Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks Nat. Methods, 9 (2012),pp. 471-472
|
[129] |
Newman, M.E., Girvan, M. Finding and evaluating community structure in networks Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 69 (2004),p. 026113
|
[130] |
Nguyen, T.P., Caberlotto, L., Morine, M.J. et al. Network analysis of neurodegenerative disease highlights a role of toll-like receptor signaling Biomed. Res. Int., 2014 (2014),p. 686505
|
[131] |
Nibbe, R.K., Koyuturk, M., Chance, M.R. An integrative -omics approach to identify functional sub-networks in human colorectal cancer PLoS Comput. Biol., 6 (2010),p. e1000639
|
[132] |
Oliver, S. Proteomics: guilt-by-association goes global Nature, 403 (2000),pp. 601-603
|
[133] |
Orchard, S., Ammari, M., Aranda, B. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases Nucleic Acids Res., 42 (2014),pp. D358-D363
|
[134] |
Oti, M., Snel, B., Huynen, M.A. et al. Predicting disease genes using protein–protein interactions J. Med. Genet., 43 (2006),pp. 691-698
|
[135] |
Pagel, P., Kovac, S., Oesterheld, M. et al. The MIPS mammalian protein–protein interaction database Bioinformatics, 21 (2005),pp. 832-834
|
[136] |
Palla, G., Derényi, I., Farkas, I. et al. Uncovering the overlapping community structure of complex networks in nature and society Nature, 435 (2005),pp. 814-818
|
[137] |
Patil, M.A., Chua, M.S., Pan, K.H. et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma Oncogene, 24 (2005),pp. 3737-3747
|
[138] |
Pavlidis, P., Gillis, J. Progress and challenges in the computational prediction of gene function using networks: 2012-2013 update F1000Res., 2 (2013),p. 230
|
[139] |
Pavlopoulos, G.A., O'Donoghue, S.I., Satagopam, V.P. et al. Arena3D: visualization of biological networks in 3D BMC Syst. Biol., 2 (2008),p. 104
|
[140] |
Peng, H., Long, F., Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005),pp. 1226-1238
|
[141] |
Pollack, J.R., Sorlie, T., Perou, C.M. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 12963-12968
|
[142] |
Prasad, T.K., Goel, R., Kandasamy, K. et al. Human protein reference database—2009 update Nucleic Acids Res., 37 (2009),pp. D767-D772
|
[143] |
Pujana, M.A., Han, J.-D.J., Starita, L.M. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction Nat. Genet., 39 (2007),pp. 1338-1349
|
[144] |
Pyatnitskiy, M., Mazo, I., Shkrob, M. et al. Clustering gene expression regulators: new approach to disease subtyping PLoS One, 9 (2014),p. e84955
|
[145] |
Qian, L., Zheng, H., Zhou, H. et al. PLoS One, 8 (2013),p. e58383
|
[146] |
Ray, M., Ruan, J., Zhang, W. Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases Genome Biol., 9 (2008),p. R148
|
[147] |
Reilly, S.K., Yin, J., Ayoub, A.E. et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis Science, 347 (2015),pp. 1155-1159
|
[148] |
Ren, G., Liu, Z. NetCAD: a network analysis tool for coronary artery disease-associated PPI network Bioinformatics, 29 (2013),pp. 279-280
|
[149] |
Rivera, C.G., Vakil, R., Bader, J.S. NeMo: network module identification in Cytoscape BMC Bioinformatics, 11 (2010),p. S61
|
[150] |
Rual, J.-F., Venkatesan, K., Hao, T. et al. Towards a proteome-scale map of the human protein–protein interaction network Nature, 437 (2005),pp. 1173-1178
|
[151] |
Ruan, J., Dean, A.K., Zhang, W. A general co-expression network-based approach to gene expression analysis: comparison and applications BMC Syst. Biol., 4 (2010),p. 8
|
[152] |
Ruan, J., Zhang, W. Identifying network communities with a high resolution Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77 (2008),p. 016104
|
[153] |
Rzhetsky, A., Wajngurt, D., Park, N. et al. Probing genetic overlap among complex human phenotypes Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11694-11699
|
[154] |
Saha, A., Tan, A.C., Kang, J. Automatic context-specific subnetwork discovery from large interaction networks PLoS One, 9 (2014),p. e84227
|
[155] |
Saito, R., Smoot, M.E., Ono, K. et al. A travel guide to cytoscape plugins Nat. Methods, 9 (2012),pp. 1069-1076
|
[156] |
Salwinski, L., Miller, C.S., Smith, A.J. et al. The database of interacting proteins: 2004 update Nucleic Acids Res., 32 (2004),pp. D449-D451
|
[157] |
Sarajlic, A., Janjic, V., Stojkovic, N. et al. Network topology reveals key cardiovascular disease genes PLoS One, 8 (2013),p. e71537
|
[158] |
Sarajlic, A., Przulj, N. Survey of network-based approaches to research of cardiovascular diseases Biomed Res. Int., 2014 (2014),p. 527029
|
[159] |
Schaefer, C.F., Anthony, K., Krupa, S. et al. PID: the pathway interaction database Nucleic Acids Res., 37 (2009),pp. D674-D679
|
[160] |
Shannon, P., Markiel, A., Ozier, O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res., 13 (2003),pp. 2498-2504
|
[161] |
Shi, Z., Wang, J., Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks Nat. Methods, 10 (2013),pp. 597-598
|
[162] |
Singh, R., Park, D., Xu, J. et al. Struct2Net: a web service to predict protein–protein interactions using a structure-based approach Nucleic Acids Res., 38 (2010),pp. W508-W515
|
[163] |
Sivachenko, A.Y., Yuryev, A., Daraselia, N. et al. Molecular networks in microarray analysis J. Bioinform. Comput. Biol., 5 (2007),pp. 429-456
|
[164] |
Stelzl, U., Worm, U., Lalowski, M. et al. A human protein–protein interaction network: a resource for annotating the proteome Cell, 122 (2005),pp. 957-968
|
[165] |
Stöckel, D., Müller, O., Kehl, T. et al. NetworkTrail—a web service for identifying and visualizing deregulated subnetworks Bioinformatics, 29 (2013),pp. 1702-1703
|
[166] |
Sun, J., Pan, Y., Feng, X. et al. iBIG: an integrative network tool for supporting human disease mechanism studies Genomics Proteomics Bioinformatics, 11 (2013),pp. 166-171
|
[167] |
Suthram, S., Dudley, J.T., Chiang, A.P. et al. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets PLoS Comput. Biol., 6 (2010),p. e1000662
|
[168] |
Talwar, P., Silla, Y., Grover, S. et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease BMC Genomics, 15 (2014),p. 199
|
[169] |
Taylor, I.W., Linding, R., Warde-Farley, D. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome Nat. Biotechnol., 27 (2009),pp. 199-204
|
[170] |
Theocharidis, A., Van Dongen, S., Enright, A.J. et al. Network visualization and analysis of gene expression data using BioLayout Express3D Nat. Protoc., 4 (2009),pp. 1535-1550
|
[171] |
Troyanskaya, O.G., Dolinski, K., Owen, A.B. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8348-8353
|
[172] |
Tsiliki, G., Kossida, S. Fusion methodologies for biomedical data J. Proteom., 74 (2011),pp. 2774-2785
|
[173] |
Turner, F.S., Clutterbuck, D.R., Semple, C.A. POCUS: mining genomic sequence annotation to predict disease genes Genome Biol., 4 (2003)
|
[174] |
Tusher, V.G., Tibshirani, R., Chu, G. Significance analysis of microarrays applied to the ionizing radiation response Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5116-5121
|
[175] |
Ulitsky, I., Maron-Katz, A., Shavit, S. et al. Expander: from expression microarrays to networks and functions Nat. Protoc., 5 (2010),pp. 303-322
|
[176] |
Ummanni, R., Mundt, F., Pospisil, H. et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform PLoS One, 6 (2011),p. e16833
|
[177] |
UniProt Consortium UniProt: a hub for protein information Nucleic Acids Res., 43 (2015),pp. D204-D212
|
[178] |
van't Veer, L.J., Dai, H., van de Vijver, M.J. et al. Gene expression profiling predicts clinical outcome of breast cancer Nature, 415 (2002),pp. 530-536
|
[179] |
Van den Akker, E.B., Verbruggen, B., Heijmans, B. et al. Integrating protein–protein interaction networks with gene–gene co-expression networks improves gene signatures for classifying breast cancer metastasis J. Integr. Bioinform., 8 (2011),p. 188
|
[180] |
van Driel, M.A., Bruggeman, J., Vriend, G. et al. A text-mining analysis of the human phenome Eur. J. Hum. Genet., 14 (2006),pp. 535-542
|
[181] |
Vandin, F., Upfal, E., Raphael, B.J. Algorithms for detecting significantly mutated pathways in cancer J. Comput. Biol., 18 (2011),pp. 507-522
|
[182] |
Vanunu, O., Magger, O., Ruppin, E. et al. PLoS Comput. Biol., 6 (2010),p. e1000641
|
[183] |
Vinh, N.X., Chetty, M., Coppel, R. et al. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion Bioinformatics, 27 (2011),pp. 2765-2766
|
[184] |
Von Mering, C., Krause, R., Snel, B. et al. Comparative assessment of large-scale data sets of protein–protein interactions Nature, 417 (2002),pp. 399-403
|
[185] |
Wang, Y., Thilmony, R., Gu, Y.Q. NetVenn: an integrated network analysis web platform for gene lists Nucleic Acids Res., 42 (2014),pp. W161-W166
|
[186] |
Weile, J., James, K., Hallinan, J. et al. Bayesian integration of networks without gold standards Bioinformatics, 28 (2012),pp. 1495-1500
|
[187] |
Whirl-Carrillo, M., McDonagh, E., Hebert, J. et al. Pharmacogenomics knowledge for personalized medicine Clin. Pharmacol. Ther., 92 (2012),pp. 414-417
|
[188] |
Willsey, A.J., Sanders, S.J., Li, M. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism Cell, 155 (2013),pp. 997-1007
|
[189] |
Wu, G., Dawson, E., Duong, A. et al. ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis F1000Res, 3 (2014),p. 146
|
[190] |
Wu, G., Feng, X., Stein, L. Research A human functional protein interaction network and its application to cancer data analysis Genome Biol., 11 (2010),p. R53
|
[191] |
Wu, G., Stein, L. A network module-based method for identifying cancer prognostic signatures Genome Biol., 13 (2012),p. R112
|
[192] |
Wu, M.Y., Dai, D.Q., Zhang, X.F. et al. PLoS One, 8 (2013),p. e66256
|
[193] |
Wu, X., Jiang, R., Zhang, M.Q. et al. Network-based global inference of human disease genes Mol. Syst. Biol., 4 (2008),p. 189
|
[194] |
Xia, J., Benner, M.J., Hancock, R.E. NetworkAnalyst-integrative approaches for protein–protein interaction network analysis and visual exploration Nucleic Acids Res., 42 (2014),pp. W167-W174
|
[195] |
Xu, J., Li, Y. Discovering disease-genes by topological features in human protein–protein interaction network Bioinformatics, 22 (2006),pp. 2800-2805
|
[196] |
Yamanishi, Y., Araki, M., Gutteridge, A. et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces Bioinformatics, 24 (2008),pp. i232-i240
|
[197] |
Yang, R., Bai, Y., Qin, Z. et al. EgoNet: identification of human disease ego-network modules BMC Genomics, 15 (2014),p. 314
|
[198] |
Yu, W., He, L., Zhao, Y. et al. Dynamic protein-protein interaction subnetworks of lung cancer in cases with smoking history Chin. J. Cancer, 32 (2013),pp. 84-90
|
[199] |
Yuryev, A., Kotelnikova, E., Daraselia, N. Ariadne's ChemEffect and Pathway Studio knowledge base Expert Opin. Drug Discov., 4 (2009),pp. 1307-1318
|
[200] |
Zhang, S., Li, Q., Liu, J. et al. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules Bioinformatics, 27 (2011),pp. i401-i409
|
[201] |
Zhang, W., Ota, T., Shridhar, V. et al. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment PLoS Comput. Biol., 9 (2013),p. e1002975
|
[202] |
Zhang, X., Zhang, R., Jiang, Y. et al. The expanded human disease network combining protein–protein interaction information Eur. J. Hum. Genet., 19 (2011),pp. 783-788
|
[203] |
Zhang, Y., De, S., Garner, J.R. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information BMC Med. Genomics, 3 (2010),p. 1
|
[204] |
Zhou, H., Pan, W., Shen, X. Penalized model-based clustering with unconstrained covariance matrices Electron. J. Stat., 3 (2009),p. 1473
|
[205] |
Zhuang, L., Wu, Y., Han, J. et al. A network biology approach to discover the molecular biomarker associated with hepatocellular carcinoma Biomed. Res. Int., 2014 (2014),p. 278956
|
[206] |
Žitnik, M., Janjić, V., Larminie, C. et al. Discovering disease–disease associations by fusing systems-level molecular data Sci. Rep., 3 (2013),p. 3202
|