[1] |
Ainley, W.M., Sastry-Dent, L., Welter, M.E. et al. Plant Biotechnol. J., 11 (2013),pp. 1126-1134
|
[2] |
Brooks, C., Nekrasov, V., Lippman, Z.B. et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system Plant Physiol., 166 (2014),pp. 1292-1297
|
[3] |
Buckner, B., Kelson, T.L., Robertson, D.S. Plant Cell, 2 (1990),pp. 867-876
|
[4] |
Buckner, B., San Miguel, P., Janick-Buckner, D. et al. Genetics, 143 (1996),pp. 479-488
|
[5] |
Campbell, F., Setzer, D.R. Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition Mol. Cell. Biol., 12 (1992),pp. 2260-2272
|
[6] |
Char, S.N., Unger-Wallace, E., Frame, B. et al. Heritable site-specific mutagenesis using TALENs in maize Plant Biotechnol. J., 13 (2015),pp. 1002-1010
|
[7] |
Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
|
[8] |
Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
|
[9] |
Christian, M., Qi, Y., Zhang, Y. et al. G3, 3 (2013),pp. 1697-1705
|
[10] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[11] |
Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
|
[12] |
Das, G., Henning, D., Wright, D. et al. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III EMBO J., 7 (1988),pp. 503-512
|
[13] |
Feng, Z., Mao, Y., Xu, N. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 4632-4637
|
[14] |
Feng, Z.Y., Zhang, B.T., Ding, W.N. et al. Efficient genome editing in plants using a CRISPR/Cas system Cell Res., 23 (2013),pp. 1229-1232
|
[15] |
Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
|
[16] |
Garneau, J.E., Dupuis, M.-È., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
|
[17] |
Goff, S.A., Ricke, D., Lan, T.-H. et al. Science, 296 (2002),pp. 92-100
|
[18] |
Haun, W., Coffman, A., Clasen, B.M. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnol. J., 12 (2014),pp. 934-940
|
[19] |
Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
|
[20] |
Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. et al. Targeted genome modifications in soybean with CRISPR/Cas9 BMC Biotechnol., 15 (2015),p. 16
|
[21] |
Jia, H., Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA PLoS One, 9 (2014),p. e93806
|
[22] |
Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
|
[23] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[24] |
Kim, Y.-G., Cha, J., Chandrasegaran, S. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
|
[25] |
Kuscu, C., Arslan, S., Singh, R. et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease Nat. Biotechnol., 32 (2014),pp. 677-683
|
[26] |
Lees-Miller, S., Meek, K. Repair of DNA double strand breaks by non-homologous end joining Biochimie, 85 (2003),pp. 1161-1173
|
[27] |
Li, J.-F., Norville, J.E., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
|
[28] |
Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
|
[29] |
Liang, Z., Zhang, K., Chen, K. et al. J. Genet. Genomics, 41 (2014),pp. 63-68
|
[30] |
Ling, H.-Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
|
[31] |
Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
|
[32] |
Mao, Y., Zhang, H., Xu, N. et al. Application of the CRISPR-Cas system for efficient genome engineering in plants Mol. Plant, 6 (2013),pp. 2008-2011
|
[33] |
Marraffini, L.A., Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea Nat. Rev. Genet., 11 (2010),pp. 181-190
|
[34] |
McVey, M., Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings Trends Genet., 24 (2008),pp. 529-538
|
[35] |
Miao, J., Guo, D., Zhang, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system Cell Res., 23 (2013),p. 1233
|
[36] |
Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
|
[37] |
Nekrasov, V., Staskawicz, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
|
[38] |
Osakabe, K., Osakabe, Y., Toki, S. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12034-12039
|
[39] |
Park, J., Kunkel, G.R. Biochem. Biophys. Res. Commun., 214 (1995),pp. 934-940
|
[40] |
Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
|
[41] |
Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
|
[42] |
Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
|
[43] |
Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant, 6 (2013),pp. 1365-1368
|
[44] |
Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[45] |
Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
|
[46] |
Sugano, S.S., Shirakawa, M., Takagi, J. et al. Plant Cell Physiol., 55 (2014),pp. 475-481
|
[47] |
Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
|
[48] |
Veretnik, S., Rubenstein, I. Nucleotide sequence of a maize U6 gene Nucleic Acids Res., 18 (1990)
|
[49] |
Wang, S., Zhang, S., Wang, W. et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system Plant Cell Rep., 34 (2015),pp. 1473-1476
|
[50] |
Wang, Y.P., Cheng, X., Shan, Q.W. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
|
[51] |
Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
|
[52] |
Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
|
[53] |
Wyman, C., Ristic, D., Kanaar, R. Homologous recombination-mediated double-strand break repair DNA Repair, 3 (2004),pp. 827-833
|
[54] |
Xie, K., Yang, Y. RNA-guided genome editing in plants using a CRISPR–Cas system Mol. Plant, 6 (2013),pp. 1975-1983
|
[55] |
Xing, H.L., Li, D., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014)
|
[56] |
Yoo, S.-D., Cho, Y.-H., Sheen, J. Nat. Protoc., 2 (2007),pp. 1565-1572
|
[57] |
Zecherle, G.N., Whelen, S., Hall, B.D. Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression Mol. Cell. Biol., 16 (1996),pp. 5801-5810
|
[58] |
Zhu, T., Peterson, D.J., Tagliani, L. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 8768-8773
|