5.9
CiteScore
5.9
Impact Factor
Volume 43 Issue 3
Mar.  2016
Turn off MathJax
Article Contents

Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence

doi: 10.1016/j.jgg.2015.09.012
More Information
  • Corresponding author: E-mail address: qianqian188@hotmail.com (Qian Qian); E-mail address: jrzuo@genetics.ac.cn (Jianru Zuo)
  • Received Date: 2015-07-08
  • Accepted Date: 2015-09-15
  • Rev Recd Date: 2015-08-27
  • Available Online: 2016-01-08
  • Publish Date: 2016-03-20
  • Leaf senescence is one of the major factors contributing to the productivity and the grain quality in crops. The regulatory mechanism of leaf senescence remains largely unknown. Here, we report the identification and characterization of a rice (eas1) mutant, which displayed an early leaf senescence phenotype, accompanying by dwarfism and reduced tiller number, eventually leading to the reduction of grain yield. Map-based cloning revealed that the nuclear gene EAS1 encodes a pheophorbide a oxygenase (PaO), a key enzyme for chlorophyll breakdown. A highly conserved Thr residue of PaO was mutated into Ile in the eas1 mutant. Phylogenetic analysis indicates that PaO is an evolutionarily conserved protein, and EAS1 is 68% identical to the Arabidopsis ACCERLERATED CELL DEATH (ACD1) protein. Unlike ACD1 that contains a single transit peptide, EAS1 contains two putative transit peptides at its N-terminus, which are essential for its functionality, suggesting that targeting of EAS1 to the chloroplast is likely mediated by a putative bipartite transit peptide. Consistently, only a short version of EAS1 lacking the first putative transit peptide, but not the full-length EAS1, was capable of rescuing theArabidopsis acd1 mutant phenotype. These results suggest that rice EAS1 represents a functional PaO, which is involved in chlorophyll degradation and may utilize a unique mechanism for its import into the chloroplast.
  • Present address: Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
  • loading
  • [1]
    Aldridge, C., Cain, P., Robinson, C. Protein transport in organelles: protein transport into and across the thylakoid membrane FEBS J., 276 (2009),pp. 1177-1186
    [2]
    Balsera, M., Soll, J., Buchanan, B.B. Redox extends its regulatory reach to chloroplast protein import Trends Plant Sci., 15 (2010),pp. 515-521
    [3]
    Bruce, B.D. Chloroplast transit peptides: structure, function and evolution Trends Cell Biol., 10 (2000),pp. 440-447
    [4]
    Buchanan-Wollaston, V., Page, T., Harrison, E. et al. Plant J., 42 (2005),pp. 567-585
    [5]
    Clough, S.J., Bent, A.F. Plant J., 16 (1998),pp. 735-743
    [6]
    Emanuelsson, O., Brunak, S., von Heijne, G. et al. Locating proteins in the cell using TargetP, SignalP and related tools Nat. Protoc., 2 (2007),pp. 953-971
    [7]
    Emanuelsson, O., Nielsen, H., von Heijne, G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites Protein Sci., 8 (1999),pp. 978-984
    [8]
    Gray, J., Close, P.S., Briggs, S.P. et al. Cell, 89 (1997),pp. 25-31
    [9]
    Greenberg, J.T., Ausubel, F.M. Plant J., 4 (1993),pp. 327-341
    [10]
    Guan, C., Wang, X., Feng, J. et al. Plant Physiol., 164 (2014),pp. 1515-1526
    [11]
    Hirashima, M., Tanaka, R., Tanaka, A. Plant Cell Physiol., 50 (2009),pp. 719-729
    [12]
    Hortensteiner, S. Chlorophyll degradation during senescence Annu. Rev. Plant Biol., 57 (2006),pp. 55-77
    [13]
    Huang, X., Kurata, N., Wei, X. et al. A map of rice genome variation reveals the origin of cultivated rice Nature, 490 (2012),pp. 497-501
    [14]
    Jelenska, J., van Hal, J.A., Greenberg, J.T. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 13177-13182
    [15]
    Jensen, P.E., Leister, D. Chloroplast evolution, structure and functions F1000Prime Rep., 6 (2014),p. 40
    [16]
    Jiang, H., Li, M., Liang, N. et al. Molecular cloning and function analysis of the stay green gene in rice Plant J., 52 (2007),pp. 197-209
    [17]
    Jing, H.C., Nam, H.G. Leaf senescence in plants: from model plants to crops, still so many unknowns J. Integr. Plant Biol., 54 (2012),pp. 514-515
    [18]
    Kusaba, M., Ito, H., Morita, R. et al. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence Plant Cell, 19 (2007),pp. 1362-1375
    [19]
    Li, H.-M., Chiu, C.-C. Protein transport into chloroplasts Annu. Rev. Plant Biol., 61 (2010),pp. 157-180
    [20]
    Li, H.M., Teng, Y.S. Transit peptide design and plastid import regulation Trends Plant Sci., 18 (2013),pp. 360-366
    [21]
    Lim, P.O., Kim, H.J., Nam, H.G. Leaf senescence Annu. Rev. Plant Biol., 58 (2007),pp. 115-136
    [22]
    Matile, P., Schellenberg, M. Plant Physiol. Biochem., 34 (1996),pp. 55-59
    [23]
    Nakai, K., Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci., 24 (1999),pp. 34-36
    [24]
    Olsen, J.V., Blagoev, B., Gnad, F. et al. Cell, 127 (2006),pp. 635-648
    [25]
    Park, S.Y., Yu, J.W., Park, J.S. et al. The senescence-induced staygreen protein regulates chlorophyll degradation Plant Cell, 19 (2007),pp. 1649-1664
    [26]
    Pribil, M., Labs, M., Leister, D. Structure and dynamics of thylakoids in land plants J. Exp. Bot., 65 (2014),pp. 1955-1972
    [27]
    Pruzinska, A., Anders, I., Aubry, S. et al. Plant Cell, 19 (2007),pp. 369-387
    [28]
    Pruzinska, A., Tanner, G., Anders, I. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 15259-15264
    [29]
    Quirino, B.F., Noh, Y.S., Himelblau, E. et al. Molecular aspects of leaf senescence Trends Plant Sci., 5 (2000),pp. 278-282
    [30]
    Ren, B., Liang, Y., Deng, Y. et al. Cell Res., 19 (2009),pp. 1178-1190
    [31]
    Sakuraba, Y., Schelbert, S., Park, S.Y. et al. Plant Cell, 24 (2012),pp. 507-518
    [32]
    Sakuraba, Y., Park, S.Y., Paek, N.C. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation Mol. Cells, 38 (2015),pp. 390-395
    [33]
    Schubert, M., Petersson, U.A., Haas, B.J. et al. J. Biol. Chem., 277 (2002),pp. 8354-8365
    [34]
    Sievers, F., Wilm, A., Dineen, D. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega Mol. Syst. Biol., 7 (2011),p. 539
    [35]
    Tanaka, R., Hirashima, M., Satoh, S. et al. Plant Cell Physiol., 44 (2003),pp. 1266-1274
    [36]
    Tang, Y., Li, M., Chen, Y. et al. J. Plant Physiol., 168 (2011),pp. 1952-1959
    [37]
    Toki, S., Hara, N., Ono, K. et al. Plant J., 47 (2006),pp. 969-976
    [38]
    Wu, X.Y., Kuai, B.K., Jia, J.Z. et al. Regulation of leaf senescence and crop genetic improvement J. Integr. Plant Biol., 54 (2012),pp. 936-952
    [39]
    Yao, N., Greenberg, J.T. Plant Cell, 18 (2006),pp. 397-411
    [40]
    Zhang, X.P., Glaser, E. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone Trends Plant Sci., 7 (2002),pp. 14-21
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return