[1] |
Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
|
[2] |
Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
|
[3] |
Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
|
[4] |
Sander, J.D., Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes Nat. Biotechnol., 32 (2014),pp. 347-355
|
[5] |
Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
|
[6] |
Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
|
[7] |
Wijnker, E., de Jong, H. Managing meiotic recombination in plant breeding Trends Plant Sci., 13 (2008),pp. 640-646
|
[8] |
Xie, K., Minkenberg, B., Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 3570-3575
|
[9] |
Xing, H.L., Dong, L., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014),p. 327
|
[10] |
Zhang, H., Zhang, J., Wei, P. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation Plant Biotechnol. J., 12 (2014),pp. 797-807
|
[11] |
Zhou, H., Liu, B., Weeks, D.P. et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice Nucleic Acids Res., 42 (2014),pp. 10903-10914
|