[1] |
Adimoolam, S., Ford, J.M. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 12985-12990
|
[2] |
Berenbaum, M.C. A method for testing for synergy with any number of agents J. Infect. Dis., 137 (1978),pp. 122-130
|
[3] |
Berg, R.J., Ruven, H.J., Sands, A.T. et al. Defective global genome repair in XPC mice is associated with skin cancer susceptibility but not with sensitivity to UVB induced erythema and edema J. Invest. Dermatol., 110 (1998),pp. 405-409
|
[4] |
Boldogh, I., Bacsi, A., Choudhury, B.K. et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation J. Clin. Invest., 115 (2005),pp. 2169-2179
|
[5] |
Boldogh, I., Liebenthal, D., Hughes, T.K. et al. Modulation of 4HNE-mediated signaling by proline-rich peptides from ovine colostrum J. Mol. Neurosci., 20 (2003),pp. 125-134
|
[6] |
Boldogh, I., Roy, G., Lee, M.S. et al. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress Toxicology, 193 (2003),pp. 137-152
|
[7] |
Cheo, D.L., Meira, L.B., Burns, D.K. et al. Cancer Res., 60 (2000),pp. 1580-1584
|
[8] |
Cheo, D.L., Meira, L.B., Hammer, R.E. et al. Curr. Biol., 6 (1996),pp. 1691-1694
|
[9] |
Cheo, D.L., Ruven, H.J., Meira, L.B. et al. Mutat. Res., 374 (1997),pp. 1-9
|
[10] |
Cooper, W.A., Lam, D.C., O'Toole, S.A. et al. Molecular biology of lung cancer J. Thorac. Dis., 5 (2013),pp. S479-S490
|
[11] |
D'Errico, M., Parlanti, E., Teson, M. et al. New functions of XPC in the protection of human skin cells from oxidative damage EMBO J., 25 (2006),pp. 4305-4315
|
[12] |
Dusinska, M., Collins, A.R. The comet assay in human biomonitoring: gene-environment interactions Mutagenesis, 23 (2008),pp. 191-205
|
[13] |
Fan, Q., Gu, D., Liu, H. et al. Defective TGF-beta signaling in bone marrow-derived cells prevents hedgehog-induced skin tumors Cancer Res., 74 (2014),pp. 471-483
|
[14] |
Friedberg, E.C., Bond, J.P., Burns, D.K. et al. Mutat. Res., 459 (2000),pp. 99-108
|
[15] |
Gu, D., Liu, H., Su, G.H. et al. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis Mol. Cancer Ther., 12 (2013),pp. 1038-1048
|
[16] |
Hastak, K., Adimoolam, S., Trinklein, N.D. et al. Genes Cancer, 3 (2012),pp. 131-140
|
[17] |
Hollander, M.C., Philburn, R.T., Patterson, A.D. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 13200-13205
|
[18] |
Hu, Z., Wang, Y., Wang, X. et al. Int. J. Cancer, 115 (2005),pp. 478-483
|
[19] |
Jackson, E.L., Willis, N., Mercer, K. et al. Genes Dev., 15 (2001),pp. 3243-3248
|
[20] |
Jin, B., Dong, Y., Zhang, X. et al. PLoS One, 9 (2014),p. e93937
|
[21] |
Johnson, L., Mercer, K., Greenbaum, D. et al. Nature, 410 (2001),pp. 1111-1116
|
[22] |
Krzeszinski, J.Y., Choe, V., Shao, J. et al. XPC promotes MDM2-mediated degradation of the p53 tumor suppressor Mol. Biol. Cell, 25 (2014),pp. 213-221
|
[23] |
Lee, G.Y., Jang, J.S., Lee, S.Y. et al. J. Int. Cancer, 115 (2005),pp. 807-813
|
[24] |
Logan, A., Cocheme, H.M., Li Pun, P.B. et al. Biochim. Biophys. Acta, 1840 (2014),pp. 923-930
|
[25] |
Lu, W., Hu, Y., Chen, G. et al. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy PLoS Biol., 10 (2012),p. e1001326
|
[26] |
Matakidou, A., Eisen, T., Fleischmann, C. et al. J. Int. Cancer, 119 (2006),pp. 964-967
|
[27] |
Melis, J.P., Luijten, M., Mullenders, L.H. et al. The role of XPC: implications in cancer and oxidative DNA damage Mutat. Res., 728 (2011),pp. 107-117
|
[28] |
Melis, J.P., van Steeg, H., Luijten, M. Oxidative DNA damage and nucleotide excision repair Antioxid. Redox Signal., 18 (2013),pp. 2409-2419
|
[29] |
Melis, J.P., Wijnhoven, S.W., Beems, R.B. et al. Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes Cancer Res., 68 (2008),pp. 1347-1353
|
[30] |
Meng, Q., Skopek, T.R., Walker, D.M. et al. Environ. Mol. Mutagen, 32 (1998),pp. 236-243
|
[31] |
Menoni, H., Hoeijmakers, J.H., Vermeulen, W. J. Cell Biol., 199 (2012),pp. 1037-1046
|
[32] |
Ogrunc, M., Di Micco, R., Liontos, M. et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation Cell Death Differ., 21 (2014),pp. 998-1012
|
[33] |
Park, M.T., Kim, M.J., Suh, Y. et al. Novel signaling axis for ROS generation during K-Ras-induced cellular transformation Cell Death Differ., 21 (2014),pp. 1185-1197
|
[34] |
Parlanti, E., D'Errico, M., Degan, P. et al. The cross talk between pathways in the repair of 8-oxo-7,8-dihydroguanine in mouse and human cells Free Radic. Biol. Med., 53 (2012),pp. 2171-2177
|
[35] |
Reddel, R.R., Salghetti, S.E., Willey, J.C. et al. Development of tumorigenicity in simian virus 40-immortalized human bronchial epithelial cell lines Cancer Res., 53 (1993),pp. 985-991
|
[36] |
Robert, C., Karaszewska, B., Schachter, J. et al. Improved overall survival in melanoma with combined dabrafenib and trametinib N. Engl. J. Med., 372 (2015),pp. 30-39
|
[37] |
Sengupta, S., Harris, C.C. p53: traffic cop at the crossroads of DNA repair and recombination Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 44-55
|
[38] |
Siegel, R.L., Miller, K.D., Jemal, A. Cancer statistics, 2015 CA Cancer J. Clin., 65 (2015),pp. 5-29
|
[39] |
Thomas, A., Liu, S.V., Subramaniam, D.S. et al. Refining the treatment of NSCLC according to histological and molecular subtypes Nat. Rev. Clin. Oncol., 12 (2015),pp. 511-526
|
[40] |
Thress, K.S., Paweletz, C.P., Felip, E. et al. Nat. Med., 21 (2015),pp. 560-562
|
[41] |
Trachootham, D., Alexandre, J., Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 8 (2009),pp. 579-591
|
[42] |
Tricker, E.M., Xu, C., Uddin, S. et al. Cancer Discov., 5 (2015),pp. 960-971
|
[43] |
Ugurel, S., Loquai, C., Kahler, K. et al. A multicenter DeCOG study on predictors of vemurafenib therapy outcome in melanoma: pretreatment impacts survival Ann. Oncol., 26 (2015),pp. 573-582
|
[44] |
Vogel, U., Overvad, K., Wallin, H. et al. Cancer Lett., 222 (2005),pp. 67-74
|
[45] |
Wang, P., Zhu, C.F., Ma, M.Z. et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer Oncotarget, 6 (2015),pp. 21148-21158
|
[46] |
Weber, J.S., D'Angelo, S.P., Minor, D. et al. Lancet Oncol., 16 (2015),pp. 375-384
|
[47] |
Weinberg, F., Hamanaka, R., Wheaton, W.W. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 8788-8793
|
[48] |
Wickliffe, J.K., Ammenheuser, M.M., Salazar, J.J. et al. A model of sensitivity: 1,3-butadiene increases mutant frequencies and genomic damage in mice lacking a functional microsomal epoxide hydrolase gene Environ. Mol. Mutagen, 42 (2003),pp. 106-110
|
[49] |
Wu, Y.H., Cheng, Y.W., Chang, J.T. et al. Reduced XPC messenger RNA level may predict a poor outcome of patients with nonsmall cell lung cancer Cancer, 110 (2007),pp. 215-223
|
[50] |
Wu, Y.H., Tsai Chang, J.H., Cheng, Y.W. et al. Xeroderma pigmentosum group C gene expression is predominantly regulated by promoter hypermethylation and contributes to p53 mutation in lung cancers Oncogene, 26 (2007),pp. 4761-4773
|
[51] |
Yang, J.C., Sequist, L.V., Geater, S.L. et al. Lancet Oncol., 16 (2015),pp. 830-838
|
[52] |
Yang, J.C., Wu, Y.L., Schuler, M. et al. Lancet Oncol., 16 (2015),pp. 141-151
|
[53] |
Yang, Y., Sharma, R., Sharma, A. et al. Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling Acta Biochim. Pol., 50 (2003),pp. 319-336
|
[54] |
Zhong, H., Yin, H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria Redox Biol., 4 (2015),pp. 193-199
|