5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 12
Dec.  2015
Turn off MathJax
Article Contents

Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome

doi: 10.1016/j.jgg.2015.09.004
More Information
  • Corresponding author: E-mail address: amornrat.nar@mahidol.ac.th (Amornrat Naranuntarat Jensen)
  • Received Date: 2015-06-10
  • Accepted Date: 2015-09-14
  • Rev Recd Date: 2015-09-13
  • Available Online: 2015-09-25
  • Publish Date: 2015-12-20
  • Shwachman-Diamond syndrome (SDS) is a multi-system disorder characterized by bone marrow failure, pancreatic insufficiency, skeletal abnormalities, and increased risk of leukemic transformation. Most patients with SDS contain mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS), encoding a highly conserved protein that has been implicated in ribosome biogenesis. Emerging evidence also suggests a distinct role of SBDS beyond protein translation. Using the yeast model of SDS, we examined the underlying mechanisms that cause cells lacking Sdo1p, the yeast SBDS ortholog, to exhibit reduced tolerance to various stress conditions. Our analysis indicates that the environmental stress response (ESR), heat shock response (HSR), and endoplasmic reticulum unfolded protein response (UPR) of sdo1Δ cells are functional and that defects in these pathways do not produce the phenotypes observed in sdo1Δ yeast. Depletion of mitochondrial DNA (mtDNA) was observed in sdo1Δ cells, and this is a probable cause of the mitochondrial insufficiency in SDS. Prior disruption of POR1, encoding the mitochondrial voltage dependent anion channel (VDAC), abrogated the effects of SDO1 deletion and substantially restored resistance to environmental stressors and protected against damage to mtDNA. Conversely, wild-type cells over-expressing POR1 exhibited growth impairment and increased stress sensitivity similar to that seen in sdo1Δ cells. Overall, our results suggest that specific VDAC inhibitors may have therapeutic benefits for SDS patients.
  • These authors contributed equally to this work.
  • loading
  • [1]
    Aggett, P.J., Cavanagh, N.P., Matthew, D.J. et al. Shwachman's syndrome. A review of 21 cases Arch. Dis. Child., 55 (1980),pp. 331-347
    [2]
    Alexeyev, M., Shokolenko, I., Wilson, G. et al. The maintenance of mitochondrial DNA integrity-critical analysis and update Cold Spring Harb. Perspect. Biol., 5 (2013),p. a012641
    [3]
    Ambekar, C., Das, B., Yeger, H. et al. SBDS-deficiency results in deregulation of reactive oxygen species leading to increased cell death and decreased cell growth Pediatr. Blood Cancer, 55 (2010),pp. 1138-1144
    [4]
    Austin, K.M., , Coats, S.A., Tulpule, A. et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome J. Clin. Invest., 118 (2008),pp. 1511-1518
    [5]
    Ball, H.L., Zhang, B., Riches, J.J. et al. Shwachman-Bodian Diamond syndrome is a multi-functional protein implicated in cellular stress responses Hum. Mol. Genet., 18 (2009),pp. 3684-3695
    [6]
    Bhattacharya, A., McIntosh, K.B., Willis, I.M. et al. Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis Mol. Cell. Biol., 30 (2010),pp. 5562-5571
    [7]
    Bodian, M., Sheldon, W., Lightwood, R. Congenital hypoplasia of the exocrine pancreas Acta Paediatr., 53 (1964),pp. 282-293
    [8]
    Boocock, G.R., Morrison, J.A., Popovic, M. et al. Nat. Genet., 33 (2003),pp. 97-101
    [9]
    Boy-Marcotte, E., Perrot, M., Bussereau, F. et al. J. Bacteriol., 180 (1998),pp. 1044-1052
    [10]
    Burwick, N., Coats, S.A., Nakamura, T. et al. Impaired ribosomal subunit association in Shwachman-Diamond syndrome Blood, 120 (2012),pp. 5143-5152
    [11]
    Colombini, M. A candidate for the permeability pathway of the outer mitochondrial membrane Nature, 279 (1979),pp. 643-645
    [12]
    Colombini, M. Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane Ann. N. Y. Acad. Sci., 341 (1980),pp. 552-563
    [13]
    Contamine, V., Picard, M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast Microbiol. Mol. Biol. Rev., 64 (2000),pp. 281-315
    [14]
    Cox, J.S., Shamu, C.E., Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase Cell, 73 (1993),pp. 1197-1206
    [15]
    Dalle-Donne, I., Rossi, R., Giustarini, D. et al. Protein carbonyl groups as biomarkers of oxidative stress Clin. Chim. Acta, 329 (2003),pp. 23-38
    [16]
    Daugeron, M.C., Linder, P. RNA, 4 (1998),pp. 566-581
    [17]
    Davies, M.J. The oxidative environment and protein damage Biochim. Biophys. Acta, 1703 (2005),pp. 93-109
    [18]
    De Virgilio, C., Burckert, N., Bell, W. et al. Eur. J. Biochem., 212 (1993),pp. 315-323
    [19]
    Dirick, L., Bendris, W., Loubiere, V. et al. Metabolic and environmental conditions determine nuclear genomic instability in budding yeast lacking mitochondrial DNA G3 (Bethesda), 4 (2014),pp. 411-423
    [20]
    Donadieu, J., Leblanc, T., Bader Meunier, B. et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group Haematologica, 90 (2005),pp. 45-53
    [21]
    Dror, Y., Freedman, M.H. Shwachman-Diamond syndrome Br. J. Haematol., 118 (2002),pp. 701-713
    [22]
    Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast FEMS Microbiol. Rev., 24 (2000),pp. 469-486
    [23]
    Farooq, M.A., Pracheil, T.M., Dong, Z. et al. Mitochondrial DNA instability in cells lacking aconitase correlates with iron citrate toxicity Oxid. Med. Cell. Longev., 2013 (2013),p. 493536
    [24]
    Federman, N., Sakamoto, K.M. The genetic basis of bone marrow failure syndromes in children Mol. Genet. Metab., 86 (2005),pp. 100-109
    [25]
    Finch, A.J., Hilcenko, C., Basse, N. et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome Genes Dev., 25 (2011),pp. 917-929
    [26]
    Foury, F. Screens for mitochondrial mutants in yeast Methods Mol. Biol., 372 (2007),pp. 167-176
    [27]
    Gietz, R.D., Schiestl, R.H. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier Yeast, 7 (1991),pp. 253-263
    [28]
    Ginzberg, H., Shin, J., Ellis, L. et al. Segregation analysis in Shwachman-Diamond syndrome: evidence for recessive inheritance Am. J. Hum. Genet., 66 (2000),pp. 1413-1416
    [29]
    Ginzberg, H., Shin, J., Ellis, L. et al. Shwachman syndrome: phenotypic manifestations of sibling sets and isolated cases in a large patient cohort are similar J. Pediatr., 135 (1999),pp. 81-88
    [30]
    Goobie, S., Popovic, M., Morrison, J. et al. Shwachman-Diamond syndrome with exocrine pancreatic dysfunction and bone marrow failure maps to the centromeric region of chromosome 7 Am. J. Hum. Genet., 68 (2001),pp. 1048-1054
    [31]
    Gorner, W., Durchschlag, E., Martinez-Pastor, M.T. et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity Genes Dev., 12 (1998),pp. 586-597
    [32]
    Guarente, L. Methods Enzymol., 101 (1983),pp. 181-191
    [33]
    Guydosh, N.R., Green, R. Dom34 rescues ribosomes in 3′ untranslated regions Cell, 156 (2014),pp. 950-962
    [34]
    Han, D., Antunes, F., Canali, R. et al. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol J. Biol. Chem., 278 (2003),pp. 5557-5563
    [35]
    Henson, A.L., Moore, J.B.t., Alard, P. et al. Mitochondrial function is impaired in yeast and human cellular models of Shwachman Diamond syndrome Biochem. Biophys. Res. Commun., 437 (2013),pp. 29-34
    [36]
    Hutter, A., Oliver, S.G. Ethanol production using nuclear petite yeast mutants Appl. Microbiol. Biotechnol., 49 (1998),pp. 511-516
    [37]
    Jensen, L.T., Carroll, M.C., Hall, M.D. et al. Down-regulation of a manganese transporter in the face of metal toxicity Mol. Biol. Cell, 20 (2009),pp. 2810-2819
    [38]
    Jensen, L.T., Culotta, V.C. Mol. Cell. Biol., 20 (2000),pp. 3918-3927
    [39]
    Kawahara, T., Yanagi, H., Yura, T. et al. Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response Mol. Biol. Cell, 8 (1997),pp. 1845-1862
    [40]
    Koch, B., Mitterer, V., Niederhauser, J. et al. Yar1 protects the ribosomal protein Rps3 from aggregation J. Biol. Chem., 287 (2012),pp. 21806-21815
    [41]
    Larsen, N.B., Rasmussen, M., Rasmussen, L.J. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion, 5 (2005),pp. 89-108
    [42]
    Lee, D.H., Goldberg, A.L. Mol. Cell. Biol., 18 (1998),pp. 30-38
    [43]
    Levine, R.L., Garland, D., Oliver, C.N. et al. Determination of carbonyl content in oxidatively modified proteins Methods Enzymol., 186 (1990),pp. 464-478
    [44]
    Li, L., Ye, Y., Pan, L. et al. Biochem. Biophys. Res. Commun., 387 (2009),pp. 778-783
    [45]
    Longtine, M.S., , Demarini, D.J., Shah, N.G. et al. Yeast, 14 (1998),pp. 953-961
    [46]
    Mack, D.R., Forstner, G.G., Wilschanski, M. et al. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression Gastroenterology, 111 (1996),pp. 1593-1602
    [47]
    Mahmud, S.A., Hirasawa, T., Shimizu, H. J. Biosci. Bioeng., 109 (2010),pp. 262-266
    [48]
    Mahmud, S.A., Nagahisa, K., Hirasawa, T. et al. Yeast, 26 (2009),pp. 17-30
    [49]
    Makitie, O., Ellis, L., Durie, P.R. et al. Clin. Genet., 65 (2004),pp. 101-112
    [50]
    Martinez-Pastor, M.T., Marchler, G., Schuller, C. et al. EMBO J., 15 (1996),pp. 2227-2235
    [51]
    Matsumoto, R., Akama, K., Rakwal, R. et al. BMC Genomics, 6 (2005),p. 141
    [52]
    Menne, T.F., Goyenechea, B., Sanchez-Puig, N. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast Nat. Genet., 39 (2007),pp. 486-495
    [53]
    Miller, J.H.
    [54]
    Moore, J.B.t., Farrar, J.E., Arceci, R.J. et al. Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome Haematologica, 95 (2010),pp. 57-64
    [55]
    Morano, K.A., Grant, C.M., Moye-Rowley, W.S. Genetics, 190 (2012),pp. 1157-1195
    [56]
    Morano, K.A., Liu, P.C., Thiele, D.J. Curr. Opin. Microbiol., 1 (1998),pp. 197-203
    [57]
    Osman, C., Noriega, T.R., Okreglak, V. et al. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion Proc. Natl. Acad. Sci. USA, 112 (2015),pp. E947-E956
    [58]
    Parrou, J.L., Teste, M.A., Francois, J. Microbiology, 143 (1997),pp. 1891-1900
    [59]
    Piskur, J. Inheritance of the yeast mitochondrial genome Plasmid, 31 (1994),pp. 229-241
    [60]
    Rujkijyanont, P., Watanabe, K., Ambekar, C. et al. SBDS-deficient cells undergo accelerated apoptosis through the Fas-pathway Haematologica, 93 (2008),pp. 363-371
    [61]
    Saris, N., Holkeri, H., Craven, R.A. et al. The Hsp70 homologue Lhs1p is involved in a novel function of the yeast endoplasmic reticulum, refolding and stabilization of heat-denatured protein aggregates J. Cell Biol., 137 (1997),pp. 813-824
    [62]
    Schmitt, A.P., McEntee, K. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 5777-5782
    [63]
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis Nat. Methods, 9 (2012),pp. 671-675
    [64]
    Sezgin, G., Henson, A.L., Nihrane, A. et al. Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS Pediatr. Blood Cancer, 60 (2013),pp. 281-286
    [65]
    Shammas, C., Menne, T.F., Hilcenko, C. et al. Structural and mutational analysis of the SBDS protein family. Insight into the leukemia-associated Shwachman-Diamond Syndrome J. Biol. Chem., 280 (2005),pp. 19221-19229
    [66]
    Sherman, F., Fink, G.R., Lawrence, C.W.
    [67]
    Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M. et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death Mol. Aspects Med., 31 (2010),pp. 227-285
    [68]
    Shwachman, H., Diamond, L.K., Oski, F.A. et al. The syndrome of pancreatic insufficiency and bone marrow dysfunction J. Pediatr., 65 (1964),pp. 645-663
    [69]
    Sidrauski, C., Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response Cell, 90 (1997),pp. 1031-1039
    [70]
    Sikorski, R.S., Hieter, P. Genetics, 122 (1989),pp. 19-27
    [71]
    Simamura, E., Hirai, K., Shimada, H. et al. Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel Cancer Biol. Ther., 5 (2006),pp. 1523-1529
    [72]
    Slater, M.R., Craig, E.A. Mol. Cell. Biol., 7 (1987),pp. 1906-1916
    [73]
    Smith, O.P., Hann, I.M., Chessells, J.M. et al. Haematological abnormalities in Shwachman-Diamond syndrome Br. J. Haematol., 94 (1996),pp. 279-284
    [74]
    Sorger, P.K. Heat shock factor and the heat shock response Cell, 65 (1991),pp. 363-366
    [75]
    Van Houten, B., Woshner, V., Santos, J.H. Role of mitochondrial DNA in toxic responses to oxidative stress DNA Repair (Amst.), 5 (2006),pp. 145-152
    [76]
    Verghese, J., Abrams, J., Wang, Y. et al. Microbiol. Mol. Biol. Rev., 76 (2012),pp. 115-158
    [77]
    Vitiello, S.P., Benedict, J.W., Padilla-Lopez, S. et al. Hum. Mol. Genet., 19 (2010),pp. 931-942
    [78]
    Vuorio, O.E., Kalkkinen, N., Londesborough, J. Eur. J. Biochem., 216 (1993),pp. 849-861
    [79]
    Weaver, P.L., Sun, C., Chang, T.H. Mol. Cell. Biol., 17 (1997),pp. 1354-1365
    [80]
    Wessels, D., Srikantha, T., Yi, S. et al. The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis J. Cell Sci., 119 (2006),pp. 370-379
    [81]
    Wiemken, A. Trehalose in yeast, stress protectant rather than reserve carbohydrate Antonie van Leeuwenhoek, 58 (1990),pp. 209-217
    [82]
    Wong, C.C., Traynor, D., Basse, N. et al. Defective ribosome assembly in Shwachman-Diamond syndrome Blood, 118 (2011),pp. 4305-4312
    [83]
    Yakes, F.M., Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 514-519
    [84]
    Yamaguchi, M., Fujimura, K., Toga, H. et al. Shwachman-Diamond syndrome is not necessary for the terminal maturation of neutrophils but is important for maintaining viability of granulocyte precursors Exp. Hematol., 35 (2007),pp. 579-586
    [85]
    Zahringer, H., Burgert, M., Holzer, H. et al. FEBS Lett., 412 (1997),pp. 615-620
    [86]
    Zahringer, H., Thevelein, J.M., Nwaka, S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth Mol. Micrbiol., 35 (2000),pp. 397-406
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (5921) PDF downloads (6) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return