5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 10
Oct.  2015
Turn off MathJax
Article Contents

Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy

doi: 10.1016/j.jgg.2015.09.002
More Information
  • Corresponding author: E-mail address: jliu2@iu.edu (Jing-Yuan Liu)
  • Received Date: 2015-07-08
  • Accepted Date: 2015-09-03
  • Rev Recd Date: 2015-09-03
  • Available Online: 2015-09-14
  • Publish Date: 2015-10-20
  • The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumental in the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3 isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells. The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by high-throughput techniques, bioinformatics, structural genomics and chemical genomics and point out that integrating the information with molecular dynamics (MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.
  • loading
  • [1]
    Aitken, A., Baxter, H., Dubois, T. et al. Specificity of 14-3-3 isoform dimer interactions and phosphorylation Biochem. Soc. Trans., 30 (2002),pp. 351-360
    [2]
    Ajjappala, B.S., Kim, Y.S., Kim, M.S. et al. 14-3-3 gamma is stimulated by IL-3 and promotes cell proliferation J. Immunol., 182 (2009),pp. 1050-1060
    [3]
    Anders, C., Higuchi, Y., Koschinsky, K. et al. Chem. Biol., 20 (2013),pp. 583-593
    [4]
    Benzinger, A., Popowicz, G.M., Joy, J.K. et al. The crystal structure of the non-liganded 14-3-3 sigma protein: insights into determinants of isoform specific ligand binding and dimerization Cell Res., 15 (2005),pp. 219-227
    [5]
    Benzinger, A., Popowicz, G.M., Joy, J.K. et al. The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization Cell Res., 15 (2005),pp. 219-227
    [6]
    Berg, D., Holzmann, C., Riess, O. 14-3-3 proteins in the nervous system Nat. Rev. Neurosci., 4 (2003),pp. 752-762
    [7]
    Bier, D., Rose, R., Bravo-Rodriguez, K. et al. Molecular tweezers modulate 14-3-3 protein-protein interactions Nat. Chem., 5 (2013),pp. 234-239
    [8]
    Bonet, R., Vakonakis, I., Campbell, I.D. Characterization of 14-3-3-zeta Interactions with integrin tails J. Mol. Biol., 425 (2013),pp. 3060-3072
    [9]
    Boudreau, A., Tanner, K., Wang, D. et al. 14-3-3sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E3937-E3944
    [10]
    Bustad, H.J., Skjaerven, L., Ying, M. et al. The peripheral binding of 14-3-3gamma to membranes involves isoform-specific histidine residues PLoS One, 7 (2012),p. e49671
    [11]
    Choi, J.E., Hur, W., Jung, C.K. et al. Silencing of 14-3-3zeta over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium Cancer Lett., 303 (2011),pp. 99-107
    [12]
    Clapp, C., Portt, L., Khoury, C. et al. 14-3-3 protects against stress-induced apoptosis Cell Death Dis., 3 (2012),p. e348
    [13]
    Colotta, F., Allavena, P., Sica, A. et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability Carcinogenesis, 30 (2009),pp. 1073-1081
    [14]
    Corradi, V., Mancini, M., Manetti, F. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein-protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis Bioorg. Med. Chem. Lett., 20 (2010),pp. 6133-6137
    [15]
    Dar, A., Wu, D., Lee, N. et al. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation Mol. Cell. Biol., 34 (2014),pp. 4049-4061
    [16]
    De Vries-van Leeuwen, I.J., da Costa Pereira, D., Flach, K.D. et al. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 8894-8899
    [17]
    Dim, D.C., Jiang, F., Qiu, Q. et al. The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration Diagn. Cytopathol., 42 (2014),pp. 193-199
    [18]
    Ding, H., Fineberg, N.S., Gray, M. et al. alpha-Synuclein overexpression represses 14-3-3theta transcription J. Mol. Neurosci., 51 (2013),pp. 1000-1009
    [19]
    Dong, S., Kang, S., Lonial, S. et al. Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070 Leukemia, 22 (2008),pp. 572-577
    [20]
    Fu, H., Subramanian, R.R., Masters, S.C. 14-3-3 proteins: structure, function, and regulation Annu. Rev. Pharmacol. Toxicol., 40 (2000),pp. 617-647
    [21]
    Fu, H.A., Subramanian, R.R., Masters, S.C. 14-3-3 proteins: structure, function, and regulation Annu. Rev. Pharmacol. Toxicol., 40 (2000),pp. 617-647
    [22]
    Ganguly, S., Weller, J.L., Ho, A. et al. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205 Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 1222-1227
    [23]
    Gavrilov, K., Saltzman, W.M. Therapeutic siRNA: principles, challenges, and strategies Yale J. Biol. Med., 85 (2012),pp. 187-200
    [24]
    Glas, A., Bier, D., Hahne, G. et al. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction Angew. Chem. Int. Ed. Engl., 53 (2014),pp. 2489-2493
    [25]
    Gong, F., Wang, G., Ye, J. et al. 14-3-3beta regulates the proliferation of glioma cells through the GSK3beta/beta-catenin signaling pathway Oncol. Rep., 30 (2013),pp. 2976-2982
    [26]
    He, M., Zhang, J., Shao, L. et al. Upregulation of 14-3-3 isoforms in acute rat myocardial injuries induced by burn and lipopolysaccharide Clin. Exp. Pharmacol. Physiol., 33 (2006),pp. 374-380
    [27]
    Hermeking, H. The 14-3-3 cancer connection Nat. Rev. Cancer, 3 (2003),pp. 931-943
    [28]
    Hermeking, H., Lengauer, C., Polyak, K. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression Mol. Cell, 1 (1997),pp. 3-11
    [29]
    Hsu, P.H., Miaw, S.C., Chuang, C.C. et al. 14-3-3theta is a binding partner of rat Eag1 potassium channels PLoS One, 7 (2012),p. e41203
    [30]
    Hu, G., Li, H., Liu, J.Y. et al. Insight into conformational change for 14-3-3sigma protein by molecular dynamics simulation Int. J. Mol. Sci., 15 (2014),pp. 2794-2810
    [31]
    Ichimura, T., Kubota, H., Goma, T. et al. Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast Biochemistry, 43 (2004),pp. 6149-6158
    [32]
    Jasinski-Bergner, S., Stehle, F., Gonschorek, E. et al. Identification of 14-3-3beta gene as a novel miR-152 target using a proteome-based approach J. Biol. Chem., 289 (2014),pp. 31121-31135
    [33]
    Kato, M., Dobyns, W.B. Lissencephaly and the molecular basis of neuronal migration Hum. Mol. Genet., 12 (2003),pp. R89-R96
    [34]
    Killoran, R.C., Fan, J., Yang, D. et al. Structural analysis of the 14-3-3zeta/Chibby interaction involved in wnt/beta-catenin signaling PLoS One, 10 (2015),p. e0123934
    [35]
    Kosaka, Y., Cieslik, K.A., Li, L. et al. 14-3-3epsilon plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle Mol. Cell. Biol., 32 (2012),pp. 5089-5102
    [36]
    Kostelecky, B., Saurin, A.T., Purkiss, A. et al. Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon EMBO Rep., 10 (2009),pp. 983-989
    [37]
    Lee, C.G., Park, G.Y., Han, Y.K. et al. Roles of 14-3-3eta in mitotic progression and its potential use as a therapeutic target for cancers Oncogene, 32 (2013),pp. 1560-1569
    [38]
    Li, Z., Dong, Z., Myer, D. et al. Role of 14-3-3sigma in poor prognosis and in radiation and drug resistance of human pancreatic cancers BMC Cancer, 10 (2010),p. 598
    [39]
    Liu, D., Bienkowska, J., Petosa, C. et al. Crystal structure of the zeta isoform of the 14-3-3 protein Nature, 376 (1995),pp. 191-194
    [40]
    Liu, H.M., Loo, Y.M., Horner, S.M. et al. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity Cell. Host. Microbe., 11 (2012),pp. 528-537
    [41]
    Liu, J.Y., Li, Z., Li, H. et al. Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14-3-3sigma J. Chem. Inf. Model, 51 (2011),pp. 2612-2625
    [42]
    Liu, Y., Liu, H., Han, B. et al. Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis Cancer Res., 66 (2006),pp. 3248-3255
    [43]
    Lu, C.H., Sun, H., Abu Bakar, F.B. et al. Rapid affinity-based fingerprinting of 14-3-3 isoforms using a combinatorial peptide microarray Angew. Chem. Int. Ed. Engl., 47 (2008),pp. 7438-7441
    [44]
    Macdonald, N., Welburn, J.P., Noble, M.E. et al. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3 Mol. Cell, 20 (2005),pp. 199-211
    [45]
    Mancini, M., Corradi, V., Petta, S. et al. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib J. Pharmacol. Exp. Ther., 336 (2011),pp. 596-604
    [46]
    Marzinke, M.A., Mavencamp, T., Duratinsky, J. et al. 14-3-3epsilon and NAV2 interact to regulate neurite outgrowth and axon elongation Arch. Biochem. Biophys., 540 (2013),pp. 94-100
    [47]
    Masters, S.C., Fu, H. 14-3-3 proteins mediate an essential anti-apoptotic signal J. Biol. Chem., 276 (2001),pp. 45193-45200
    [48]
    Matta, A., Siu, K.W., Ralhan, R. 14-3-3 zeta as novel molecular target for cancer therapy Expert. Opin. Ther. Targets, 16 (2012),pp. 515-523
    [49]
    Messaritou, G., Grammenoudi, S., Skoulakis, E.M. J. Biol. Chem., 285 (2010),pp. 1692-1700
    [50]
    Mhawech, P. 14-3-3 proteins–an update Cell Res., 15 (2005),pp. 228-236
    [51]
    Michelsen, K., Mrowiec, T., Duderstadt, K.E. et al. A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast Traffic, 7 (2006),pp. 903-916
    [52]
    Molzan, M., Kasper, S., Roglin, L. et al. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers ACS Chem. Biol., 8 (2013),pp. 1869-1875
    [53]
    Molzan, M., Ottmann, C. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3zeta dimer J. Mol. Biol., 423 (2012),pp. 486-495
    [54]
    Molzan, M., Schumacher, B., Ottmann, C. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling Mol. Cell. Biol., 30 (2010),pp. 4698-4711
    [55]
    Molzan, M., Weyand, M., Rose, R. et al. Structural insights of the MLF1/14-3-3 interaction FEBS J., 279 (2012),pp. 563-571
    [56]
    Moore, B.W., Perez, V.J.
    [57]
    Murata, T., Takayama, K., Urano, T. et al. 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival Clin. Cancer Res., 18 (2012),pp. 5617-5627
    [58]
    Neal, C.L., Yao, J., Yang, W. et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival Cancer Res., 69 (2009),pp. 3425-3432
    [59]
    Nguyen, A., Rothman, D.M., Stehn, J. et al. Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function Nat. Biotechnol., 22 (2004),pp. 993-1000
    [60]
    Obsil, T., Ghirlando, R., Klein, D.C. et al. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation Cell, 105 (2001),pp. 257-267
    [61]
    Ottmann, C., Yasmin, L., Weyand, M. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis EMBO J., 26 (2007),pp. 902-913
    [62]
    Panni, S., Montecchi-Palazzi, L., Kiemer, L. et al. Proteomics, 11 (2011),pp. 128-143
    [63]
    Petosa, C., Masters, S.C., Bankston, L.A. et al. 14-3-3 zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove J. Biol. Chem., 273 (1998),pp. 16305-16310
    [64]
    Pettersen, E.F., Goddard, T.D., Huang, C.C. et al. UCSF Chimera–a visualization system for exploratory research and analysis J. Comput. Chem., 25 (2004),pp. 1605-1612
    [65]
    Peyrl, A., Weitzdoerfer, R., Gulesserian, T. et al. Aberrant expression of signaling-related proteins 14-3-3 gamma and RACK1 in fetal Down syndrome brain (trisomy 21) Electrophoresis, 23 (2002),pp. 152-157
    [66]
    Prasad, G.L., Valverius, E.M., McDuffie, E. et al. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells Cell Growth Differ., 3 (1992),pp. 507-513
    [67]
    Qi, W., Liu, X., Qiao, D. et al. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues Int. J. Cancer, 113 (2005),pp. 359-363
    [68]
    Qin, L., Dong, Z., Zhang, J.T. Reversible epigenetic regulation of 14-3-3sigma expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1 Mol. Pharmacol., 86 (2014),pp. 561-569
    [69]
    Qin, S., Liu, Y., Tempel, W. et al. Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1 Nat. Commun., 5 (2014),p. 3952
    [70]
    Raungrut, P., Wongkotsila, A., Lirdprapamongkol, K. et al. Prognostic significance of 14-3-3gamma overexpression in advanced non-small cell lung cancer Asian Pac. J. Cancer. Prev., 15 (2014),pp. 3513-3518
    [71]
    Riou, P., Kjaer, S., Garg, R. et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins Cell, 153 (2013),pp. 640-653
    [72]
    Rittinger, K., Budman, J., Xu, J. et al. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding Mol. Cell, 4 (1999),pp. 153-166
    [73]
    Roberts, R.L., Mosch, H.U., Fink, G.R. Cell, 89 (1997),pp. 1055-1065
    [74]
    Roglin, L., Thiel, P., Kohlbacher, O. et al. Covalent attachment of pyridoxal-phosphate derivatives to 14-3-3 proteins Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E1051-E1053
    [75]
    Rose, R., Rose, M., Ottmann, C. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI J. Struct. Biol., 180 (2012),pp. 65-72
    [76]
    Sato, S., Chiba, T., Sakata, E. et al. 14-3-3eta is a novel regulator of parkin ubiquitin ligase EMBO J., 25 (2006),pp. 211-221
    [77]
    Scheibner, K.A., Teaboldt, B., Hauer, M.C. et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta PLoS One, 7 (2012),p. e50895
    [78]
    Schumacher, B., Mondry, J., Thiel, P. et al. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer FEBS Lett., 584 (2010),pp. 1443-1448
    [79]
    Schumacher, B., Skwarczynska, M., Rose, R. et al. Structure of a 14-3-3sigma-YAP phosphopeptide complex at 1.15 a resolution Acta crystallogr. Sect. F Struct. Biol. Cryst. Commun., 66 (2010),pp. 978-984
    [80]
    Sehgal, L., Mukhopadhyay, A., Rajan, A. et al. J. Cell Sci., 127 (2014),pp. 2174-2188
    [81]
    Skjevik, A.A., Mileni, M., Baumann, A. et al. The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes J. Mol. Biol., 426 (2014),pp. 150-168
    [82]
    Sluchanko, N.N., Artemova, N.V., Sudnitsyna, M.V. et al. Monomeric 14-3-3zeta has a chaperone-like activity and is stabilized by phosphorylated HspB6 Biochemistry, 51 (2012),pp. 6127-6138
    [83]
    Sluchanko, N.N., Uversky, V.N. Hidden disorder propensity of the N-terminal segment of universal adapter protein 14-3-3 is manifested in its monomeric form: novel insights into protein dimerization and multifunctionality Biochem. Biophys. Acta, 1854 (2015),pp. 492-504
    [84]
    Takala, H., Nurminen, E., Nurmi, S.M. et al. Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding Blood, 112 (2008),pp. 1853-1862
    [85]
    Thiel, P., Roglin, L., Meissner, N. et al. Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein-protein interactions Chem. Commun., 49 (2013),pp. 8468-8470
    [86]
    Tinti, M., Johnson, C., Toth, R. et al. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates Open Biol., 2 (2012),p. 120103
    [87]
    Tinti, M., Madeira, F., Murugesan, G. et al. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome Database (Oxford), 2014 (2014)
    [88]
    Trembley, M.A., Berrus, H.L., Whicher, J.R. et al. The yeast 14-3-3 proteins Bmh1 and Bmh2 differentially regulate rapamycin-mediated transcription Biosci. Rep., 34 (2014)
    [89]
    Uhart, M., Bustos, D.M. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation PLoS One, 8 (2013),p. e55703
    [90]
    Wanzel, M., Kleine-Kohlbrecher, D., Herold, S. et al. Akt and 14-3-3eta regulate Miz1 to control cell-cycle arrest after DNA damage Nat. Cell Biol., 7 (2005),pp. 30-41
    [91]
    Wilker, E.W., Grant, R.A., Artim, S.C. et al. A structural basis for 14-3-3sigma functional specificity J. Biol. Chem., 280 (2005),pp. 18891-18898
    [92]
    Xu, C., Jin, J., Bian, C. et al. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock Sci. Signal., 5 (2012),p. ra39
    [93]
    Yaffe, M.B., Rittinger, K., Volinia, S. et al. The structural basis for 14-3-3:phosphopeptide binding specificity Cell, 91 (1997),pp. 961-971
    [94]
    Yang, X., Cao, W., Lin, H. et al. Isoform-specific expression of 14-3-3 proteins in human astrocytoma J. Neurol. Sci., 276 (2009),pp. 54-59
    [95]
    Yang, X., Lee, W.H., Sobott, F. et al. Structural basis for protein-protein interactions in the 14-3-3 protein family Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 17237-17242
    [96]
    Yu, M., Guo, H.X., Hui, C. et al. 14-3-3 zeta interacts with hepatocyte nuclear factor 1alpha and enhances its DNA binding and transcriptional activation Biochim. Biophys. Acta, 1829 (2013),pp. 970-979
    [97]
    Zhao, J., Du, Y., Horton, J.R. et al. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 16212-16216
    [98]
    Zhao, J., Meyerkord, C.L., Du, Y. et al. 14-3-3 proteins as potential therapeutic targets Semin. Cell. Dev. Biol., 22 (2011),pp. 705-712
    [99]
    Zoete, V., Irving, M.B., Michielin, O. MM-GBSA binding free energy decomposition and T cell receptor engineering J. Mol. Recog., 23 (2010),pp. 142-152
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (81) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return