5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 10
Oct.  2015
Turn off MathJax
Article Contents

MicroRNA Signaling Pathway Network in Pancreatic Ductal Adenocarcinoma

doi: 10.1016/j.jgg.2015.07.003
More Information
  • Corresponding author: E-mail address: wzhang@mdanderson.org (Wei Zhang)
  • Received Date: 2015-05-23
  • Accepted Date: 2015-07-22
  • Rev Recd Date: 2015-07-16
  • Available Online: 2015-08-06
  • Publish Date: 2015-10-20
  • Pancreatic ductal adenocarcinoma (PDAC) is considered to be the most lethal and aggressive malignancy with high mortality and poor prognosis. Their responses to current multimodal therapeutic regimens are limited. It is urgently needed to identify the molecular mechanism underlying pancreatic oncogenesis. Twelve core signaling cascades have been established critical in PDAC tumorigenesis by governing a wide variety of cellular processes. MicroRNAs (miRNAs) are aberrantly expressed in different types of tumors and play pivotal roles as post-transcriptional regulators of gene expression. Here, we will describe how miRNAs regulate different signaling pathways that contribute to pancreatic oncogenesis and progression.
  • loading
  • [1]
    Arlt, A., Müerköster, S.S., Schäfer, H. Targeting apoptosis pathways in pancreatic cancer Cancer Lett., 332 (2013),pp. 346-358
    [2]
    Bai, S., Cao, X. A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling J. Biol. Chem., 277 (2002),pp. 4176-4182
    [3]
    Bleeker, F.E., Felicioni, L., Buttitta, F. et al. AKT1 (E17K) in human solid tumours Oncogene, 27 (2008),pp. 5648-5650
    [4]
    Brabletz, T., Jung, A., Spaderna, S. et al. Opinion: migrating cancer stem cells–an integrated concept of malignant tumour progression Nat. Rev. Cancer, 5 (2005),pp. 744-749
    [5]
    Broderick, J.A., Zamore, P.D. MicroRNA therapeutics Gene Ther., 18 (2011),pp. 1104-1110
    [6]
    Burk, U., Schubert, J., Wellner, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells EMBO Rep., 9 (2008),pp. 582-589
    [7]
    Cai, B., An, Y., Lv, N. et al. Oncol. Rep., 29 (2013),pp. 1769-1776
    [8]
    Chan, S.L., Chan, S.T., Chan, E.H. et al. Systemic treatment for inoperable pancreatic adenocarcinoma: review and update Chin. J. Cancer, 33 (2014),pp. 267-276
    [9]
    Chang, T.C., Wentzel, E.A., Kent, O.A. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis Mol. Cell, 26 (2007),pp. 745-752
    [10]
    Chen, W.Y., Liu, W.J., Zhao, Y.P. et al. Induction, modulation and potential targets of miR-210 in pancreatic cancer cells Hepatobiliary Pancreat. Dis. Int., 11 (2012),pp. 319-324
    [11]
    Chen, Z., Chen, L.Y., Dai, H.Y. et al. miR-301a promotes pancreatic cancer cell proliferation by directly inhibiting Bim expression J. Cell. Biochem., 113 (2012),pp. 3229-3235
    [12]
    Croce, C.M., Calin, G.A. miRNAs, cancer, and stem cell division Cell, 122 (2005),pp. 6-7
    [13]
    Croce, C.M. Causes and consequences of microRNA dysregulation in cancer Nat. Rev. Genet., 10 (2009),pp. 704-714
    [14]
    Deng, J., He, M., Chen, L. et al. The loss of miR-26a-mediated post-transcriptional regulation of cyclin E2 in pancreatic cancer cell proliferation and decreased patient survival PLoS One, 8 (2013),p. e76450
    [15]
    Ding, X.M. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT) Chin. J. Cancer, 33 (2014),pp. 140-147
    [16]
    Dong, J., Zhao, Y.P., Zhou, L. et al. Arch. Med. Res., 42 (2011),pp. 8-14
    [17]
    Dosch, J.S., Pasca di Magliano, M., Simeone, D.M. Pancreatic cancer and hedgehog pathway signaling: new insights Pancreatology, 10 (2010),pp. 151-157
    [18]
    Druz, A., Chen, Y.C., Guha, R. et al. Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines RNA Biol., 10 (2013),pp. 287-300
    [19]
    Farhana, L., Dawson, M.I., Murshed, F. et al. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R PLoS One, 8 (2013),p. e61015
    [20]
    Frampton, A.E., Krell, J., Jacob, J. et al. Loss of miR-126 is crucial to pancreatic cancer progression Expert Rev. Anticancer Ther., 7 (2012),pp. 881-884
    [21]
    Franke, T.F. PI3K/Akt: getting it right matters Oncogene, 27 (2008),pp. 6473-6488
    [22]
    Fulda, S. Evasion of apoptosis as a cellular stress response in cancer Int. J. Cell Biol., 2010 (2010),p. 370835
    [23]
    Gironella, M., Seux, M., Xie, M.J. et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 16170-16175
    [24]
    Gregory, P.A., Bert, A.G., Paterson, E.L. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 Nat. Cell Biol., 10 (2008),pp. 593-601
    [25]
    Greither, T., Grochola, L.F., Udelnow, A. et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival Int. J. Cancer, 126 (2010),pp. 73-80
    [26]
    Guo, R., Wang, Y., Shi, W.Y. et al. MicroRNA miR-491-5p targeting both TP53 and Bcl-XL induces cell apoptosis in SW1990 pancreatic cancer cells through mitochondria mediated pathway Molecules, 17 (2012),pp. 14733-14747
    [27]
    Hamada, S., Satoh, K., Fujibuchi, W. et al. Mol. Cancer Res., 10 (2012),pp. 3-10
    [28]
    Hamada, S., Masamune, A., Miura, S. et al. MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX Cell. Signal., 26 (2014),pp. 179-185
    [29]
    Hao, J., Zhang, S., Zhou, Y. et al. MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer FEBS Lett., 585 (2011),pp. 207-213
    [30]
    Hao, J., Zhang, S., Zhou, Y. et al. MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer Biochem. Biophys. Res. Commun., 406 (2011),pp. 552-557
    [31]
    Harazono, Y., Muramatsu, T., Endo, H. et al. miR-655 is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2 PLoS One, 8 (2013),p. e62757
    [32]
    Hata, A., Davis, B.N. Control of microRNA biogenesis by TGFbeta signaling pathway–A novel role of Smads in the nucleus Cytokine Growth Factor Rev., 20 (2009),pp. 517-521
    [33]
    He, D., Miao, H., Xu, Y. et al. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival PLoS One, 9 (2014),p. e112930
    [34]
    Hidalgo, M. Pancreatic cancer N. Engl. J. Med., 362 (2010),pp. 1605-1617
    [35]
    Hu, Y., Ou, Y., Wu, K. et al. MiR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway Tumour Biol., 33 (2012),pp. 1863-1870
    [36]
    Huang, F., Tang, J., Zhuang, X. et al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha PLoS One, 9 (2014),p. e87897
    [37]
    Huang, T., Alvarez, A., Hu, B. et al. Noncoding RNAs in cancer and cancer stem cells Chin. J. Cancer, 32 (2013),pp. 582-593
    [38]
    Hui, C.C., Angers, S. Gli proteins in development and disease Annu. Rev. Cell Dev. Biol., 27 (2011),pp. 513-537
    [39]
    Ivanovska, I., Ball, A.S., Diaz, R.L. et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression Mol. Cell. Biol., 28 (2008),pp. 2167-2174
    [40]
    Izumchenko, E., Chang, X., Michailidi, C. et al. The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors Cancer Res., 74 (2014),pp. 3995-4005
    [41]
    Jiang, J., Yu, C., Chen, M. et al. Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype Oncotarget, 6 (2015),pp. 2767-2778
    [42]
    Jiao, L.R., Frampton, A.E., Jacob, J. et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors PLoS One, 7 (2012),p. e32068
    [43]
    Jones, S., Zhang, X., Parsons, D.W. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses Science, 321 (2008),pp. 1801-1806
    [44]
    Kapinas, K., Kessler, C., Ricks, T. et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop J. Biol. Chem., 285 (2010),pp. 25221-25231
    [45]
    Kang, M.H., Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy Clin. Cancer Res., 15 (2009),pp. 1126-1132
    [46]
    Keklikoglou, I., Hosaka, K., Bender, C. et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes Oncogene (2014),pp. 1-12
    [47]
    Kent, O.A., Chivukula, R.R., Mullendore, M. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway Genes Dev., 24 (2010),pp. 2754-2759
    [48]
    Kong, X., Li, L., Li, Z. et al. Dysregulated expression of FOXM1 isoforms drives progression of pancreatic cancer Cancer Res., 73 (2013),pp. 3987-3996
    [49]
    Lahdaoui, F., Delpu, Y., Vincent, A. et al. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer Oncogene, 34 (2015),pp. 780-788
    [50]
    Lee, K.H., Lotterman, C., Karikari, C. et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer Pancreatology, 9 (2009),pp. 293-301
    [51]
    Li, C., Heidt, D.G., Dalerba, P. et al. Identification of pancreatic cancer stem cells Cancer Res., 67 (2007),pp. 1030-1037
    [52]
    Li, L., Li, Z., Kong, X. et al. Gastroenterology, 147 (2014),pp. 485-497
    [53]
    Li, Y., Zhang, D., Chen, C. et al. MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1 Mol. Biol. Cell, 23 (2012),pp. 1423-1434
    [54]
    Liang, X., Zeng, J., Wang, L. et al. Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212 PLoS One, 8 (2013),p. e69784
    [55]
    Liffers, S.T., Munding, J.B., Vogt, M. et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B Lab. Invest., 91 (2011),pp. 1472-1479
    [56]
    Listing, H., Mardin, W.A., Wohlfromm, S. et al. MiR-23a/-24-induced gene silencing results in mesothelial cell integration of pancreatic cancer Br. J. Cancer, 112 (2015),pp. 131-139
    [57]
    Liu, M., Du, Y., Gao, J. et al. Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells Pancreas, 42 (2013),pp. 1169-1181
    [58]
    Liu, M., Zhang, X., Hu, C.F. et al. MicroRNA-mRNA functional pairs for cisplatin resistance in ovarian cancer cells Chin. J. Cancer, 33 (2014),pp. 285-294
    [59]
    Lodygin, D., Tarasov, V., Epanchintsev, A. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer Cell Cycle, 7 (2008),pp. 2591-2600
    [60]
    Lu, Z., Li, Y., Takwi, A. et al. miR-301a as an NF-κB activator in pancreatic cancer cells EMBO J., 30 (2011),pp. 57-67
    [61]
    di Magliano, M.P., Logsdon, C.D. Roles for KRAS in pancreatic tumor development and progression Gastroenterology, 144 (2013),pp. 1220-1229
    [62]
    Ma, C., Nong, K., Wu, B. et al. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1 J. Exp. Clin. Cancer Res., 33 (2014),p. 54
    [63]
    Malumbres, M., Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm Nat. Rev. Cancer, 9 (2009),pp. 153-166
    [64]
    Meng, X., Wu, J., Pan, C. et al. Gastroenterology, 145 (2013),pp. 426-436
    [65]
    Moon, R.T., Bowerman, B., Boutros, M. et al. The promise and perils of Wnt signaling through beta-catenin Science, 296 (2002),pp. 1644-1646
    [66]
    , Cano, D.A., Sekine, S., Wang, S.C. et al. Beta-catenin blocks Kras- dependent reprogramming of acini into pancreatic cancer precursor lesions in mice J. Clin. Invest., 120 (2010),pp. 508-520
    [67]
    , Wang, S.C., Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma Nat. Rev. Cancer, 10 (2010),pp. 683-695
    [68]
    Morton, J.P., Timpson, P., Karim, S.A. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 246-251
    [69]
    Mu, Y., Gudey, S.K., Landström, M. Non-Smad signaling pathways Cell Tissue Res., 347 (2012),pp. 11-20
    [70]
    Mueller, M.T., Hermann, P.C., Witthauer, J. et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer Gastroenterology, 137 (2009),pp. 1102-1113
    [71]
    Musgrove, E.A., Caldon, C.E., Barraclough, J. et al. Cyclin D as a therapeutic target in cancer Nat. Rev. Cancer, 11 (2011),pp. 558-572
    [72]
    Nagano, H., Tomimaru, Y., Eguchi, H. et al. MicroRNA-29a induces resistance to gemcitabine through the Wnt/β-catenin signaling pathway in pancreatic cancer cells Int. J. Oncol., 43 (2013),pp. 1066-1072
    [73]
    Oettle, H., Post, S., Neuhaus, P. et al. JAMA, 297 (2007),pp. 267-277
    [74]
    Olive, K.P., Jacobetz, M.A., Davidson, C.J. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer Science, 324 (2009),pp. 1457-1461
    [75]
    Ozdamar, B., Bose, R., Barrios-Rodiles, M. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity Science, 307 (2005),pp. 1603-1609
    [76]
    Padua, D., Massagué, J. Roles of TGFbeta in metastasis Cell Res., 19 (2009),pp. 89-102
    [77]
    Pan, Y., Bai, C.B., Joyner, A.L. et al. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation Mol. Cell. Biol., 26 (2006),pp. 3365-3377
    [78]
    Park, J.K., Henry, J.C., Jiang, J. et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor Biochem. Biophys. Res. Commun., 406 (2011),pp. 518-523
    [79]
    Peifer, M., Polakis, P. Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus Science, 287 (2000),pp. 1606-1609
    [80]
    Prakash, N., Wurst, W. Neurodegener. Dis., 4 (2007),pp. 333-338
    [81]
    Pylayeva-Gupta, Y., Grabocka, E., Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web Nat. Rev. Cancer, 11 (2011),pp. 761-774
    [82]
    Reya, T., Clevers, H. Wnt signalling in stem cells and cancer Nature, 434 (2005),pp. 843-850
    [83]
    Ristorcelli, E., Beraud, E., Verrando, P. et al. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells FASEB J., 22 (2008),pp. 3358-3369
    [84]
    Rivera, F., López-Tarruella, S., Vega-Villegas, M.E. et al. Treatment of advanced pancreatic cancer: from gemcitabine single agent to combinations and targeted therapy Cancer Treat. Rev., 35 (2009),pp. 335-339
    [85]
    Rosty, C., Goggins, M. Early detection of pancreatic carcinoma Hematol. Oncol. Clin. North Am., 16 (2002),pp. 37-52
    [86]
    Rubin, L.L., de Sauvage, F.J. Targeting the Hedgehog pathway in cancer Nat. Rev. Drug Discov., 5 (2006),pp. 1026-1033
    [87]
    Samavarchi-Tehrani, P., Golipour, A., David, L. et al. Functional genomics reveals a BMP-driven mesenchymal-toepithelial transition in the initiation of somatic cell reprogramming Cell Stem Cell, 7 (2010),pp. 64-77
    [88]
    Scapoli, L., Palmieri, A., Lo, M.L. et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression Int. J. Immunopathol. Pharmacol., 23 (2010),pp. 1229-1234
    [89]
    Shen, J., Wan, R., Hu, G. et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro Pancreatology, 12 (2012),pp. 91-99
    [90]
    Shi, W., Sun, C., He, B. et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor J. Cell Biol., 164 (2004),pp. 291-300
    [91]
    Siegel, R., Ma, J., Zou, Z. et al. Cancer statistics, 2014 CA Cancer J. Clin., 64 (2014),pp. 9-29
    [92]
    Singh, P., Srinivasan, R., Wig, J.D. Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment Pancreas, 40 (2011),pp. 644-652
    [93]
    Singh, P., Srinivasan, R., Wig, J.D. et al. A study of Smad4, Smad6 and Smad7 in surgically resected samples of pancreatic ductal adenocarcinoma and their correlation with clinicopathological parameters and patient survival BMC. Res. Notes, 4 (2011),pp. 560-564
    [94]
    Slack, F.J., Weidhaas, J.B. MicroRNA in cancer prognosis N. Engl. J. Med., 359 (2008),pp. 2720-2722
    [95]
    Song, S.D., Zhou, J., Zhou, J. et al. MicroRNA-375 targets the 3-phosphoinositide-dependent protein kinase-1 gene in pancreatic carcinoma Oncol. Lett., 6 (2013),pp. 953-959
    [96]
    Spaderna, S., Schmalhofer, O., Hlubek, F. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer Gastroenterology, 131 (2006),pp. 830-840
    [97]
    Spaderna, S., Schmalhofer, O., Wahlbuhl, M. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer Cancer Res., 68 (2008),pp. 537-544
    [98]
    Sun, A., Bagella, L., Tutton, S. et al. From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway J. Cell. Biochem., 102 (2007),pp. 1400-1404
    [99]
    Sun, Y., Guo, F., Bagnoli, M. et al. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer Chin. J. Cancer, 34 (2015),pp. 28-40
    [100]
    Sun, Y., Zhang, T., Wang, C. et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2 PLoS One, 10 (2015),p. e0119783
    [101]
    Takiuchi, D., Eguchi, H., Nagano, H. et al. Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells Pancreatology, 13 (2013),pp. 517-523
    [102]
    Thayer, S.P., di Magliano, M.P., Heiser, P.W. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis Nature, 425 (2003),pp. 851-856
    [103]
    Tian, M., Neil, J.R., Schiemann, W.P. Transforming growth factor-β and the hallmarks of cancer Cell. Signal., 23 (2011),pp. 951-962
    [104]
    Torrisani, J., Bournet, B., du Rieu, M.C. et al. Hum. Gene Ther., 20 (2009),pp. 831-844
    [105]
    Tsuda, N., Ishiyama, S., Li, Y. et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells Clin. Cancer Res., 12 (2006),pp. 6557-6564
    [106]
    van den Brink, G.R. Hedgehog signaling in development and homeostasis of the gastrointestinal tract Physiol. Rev., 87 (2007),pp. 1343-1375
    [107]
    Vousden, K.H., Prives, C. Blinded by the light: the growing complexity of p53 Cell, 137 (2009),pp. 413-431
    [108]
    Walter, B.A., Valera, V.A., Pinto, P.A. et al. Comprehensive microRNA profiling of prostate cancer J. Cancer, 4 (2013),pp. 350-357
    [109]
    Wang, P., Fan, J., Chen, Z. et al. Ann. Surg. Oncol., 16 (2009),pp. 826-835
    [110]
    Wang, R.A., Li, Z.S., Yan, Q.G. et al. Resistance to apoptosis should not be taken as a hallmark of cancer Chin. J. Cancer, 33 (2014),pp. 47-50
    [111]
    Wang, S., Chen, X., Tang, M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2 Oncol. Rep., 32 (2014),pp. 2824-2830
    [112]
    Watanabe, S., Ueda, Y., Akaboshi, S. et al. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells Am. J. Pathol., 174 (2009),pp. 854-868
    [113]
    Wei, D., Wang, L., Kanai, M. et al. KLF4α up-regulation promotes cell cycle progression and reduces survival time of patients with pancreatic cancer Gastroenterology, 139 (2010),pp. 2135-2145
    [114]
    Wong, H.H., Lemoine, N.R. Pancreatic cancer: molecular pathogenesis and new therapeutic targets Nat. Rev. Gastroenterol. Hepatol., 6 (2009),pp. 412-422
    [115]
    Xu, J.W., Wang, T.X., You, L. et al. Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer PLoS One, 9 (2014),p. e92847
    [116]
    Yan, H.J., Liu, W.S., Sun, W.H. et al. Dig. Dis. Sci., 57 (2012),pp. 3160-3167
    [117]
    Youle, R.J., Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 47-59
    [118]
    Yu, S., Lu, Z., Liu, C. et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer Cancer Res., 70 (2010),pp. 6015-6025
    [119]
    Zang, W., Wang, Y., Wang, T. et al. miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer Mol. Cancer, 14 (2015),p. 37
    [120]
    Zeng, J.P., Fang, M., Wang, L.X. et al. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2 J. Cell. Biochem., 114 (2013),pp. 2666-2672
    [121]
    Zhang, B., Ma, J.X. Wnt pathway antagonists and angiogenesis Protein Cell, 1 (2010),pp. 898-906
    [122]
    Zhang, J., Jia, Z., Li, Q. et al. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors Cancer, 109 (2007),pp. 1478-1486
    [123]
    Zhang, R., Li, M., Zang, W. et al. MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2 Tumor Biol., 35 (2014),pp. 837-844
    [124]
    Zhang, X.J., Ye, H., Zeng, C.W. et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer J. Hematol. Oncol., 3 (2010),p. 46
    [125]
    Zhao, G., Zhang, J.G., Shi, Y. et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3 PLoS One, 8 (2013),p. e73803
    [126]
    Zhao, G., Zhang, J.G., Liu, Y. et al. miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1 Mol. Cancer Ther., 12 (2013),pp. 83-93
    [127]
    Zhao, W.G., Yu, S.N., Lu, Z.H. et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS Carcinogenesis, 31 (2010),pp. 1726-1733
    [128]
    Zhou, J., Song, S., He, S. et al. MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway Int. J. Mol. Med., 33 (2014),pp. 950-956
    [129]
    Zhou, L., Zhang, W.G., Wang, D.S. et al. MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi-1 Oncol. Rep., 32 (2014),pp. 1734-1740
    [130]
    Zhu, Z., Xu, Y., Zhao, J. et al. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway Br. J. Cancer, 112 (2015),pp. 1367-1375
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (55) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return