5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 8
Aug.  2015
Turn off MathJax
Article Contents

Integrative Analysis Reveals Enhanced Regulatory Effects of Human Long Intergenic Non-Coding RNAs in Lung Adenocarcinoma

doi: 10.1016/j.jgg.2015.07.001
More Information
  • Corresponding author: E-mail address: tohuangtao@126.com (Tao Huang); E-mail address: xykong@sibs.ac.cn (Xiangyin Kong)
  • Received Date: 2015-04-13
  • Accepted Date: 2015-07-02
  • Rev Recd Date: 2015-06-29
  • Available Online: 2015-07-10
  • Publish Date: 2015-08-20
  • Although there is an accumulating appreciation of the key roles that long intergenic non-coding RNAs (lincRNAs) play in diverse cellular processes, our knowledge of how lincRNAs function in cancer remains sparse. Here, we present a comprehensive landscape of RNA-seq transcriptome profiles of lung adenocarcinomas and their paired normal counterparts to unravel gene regulation rules of lincRNAs. Consistent with previous findings of co-expression between neighboring protein-coding genes, lincRNAs were typically co-expressed with their neighboring genes, which was found in both cancerous and normal tissues. By building a mathematical model based on correlated gene expression, we distinguished an additional subset of lincRNAs termed “regulatory lincRNAs”, representing their dominant roles in gene regulation. The number of regulatory lincRNAs was significantly higher in cancerous compared to normal tissues, and most of them positively regulated protein-coding genes intrans. Functional validation, using knockdown, determined that regulatory lincRNA, GAS5, affected its predicted protein-coding targets. Moreover, we discovered hundreds of differentially expressed regulatory lincRNAs with inclusion of some cancer-associated lincRNAs. Our integrated analysis reveals enhanced regulatory effects of lincRNAs and provides a resource for the study of regulatory lincRNAs that play critical roles in lung adenocarcinoma.
  • loading
  • [1]
    Barlow, D.P., Stoger, R., Herrmann, B.G. et al. Nature, 349 (1991),pp. 84-87
    [2]
    Bartolomei, M.S., Zemel, S., Tilghman, S.M. Nature, 351 (1991),pp. 153-155
    [3]
    Beltran, M., Puig, I., Pena, C. et al. Genes Dev., 22 (2008),pp. 756-769
    [4]
    Blanchet, F.G., Legendre, P., Borcard, D. Forward selection of explanatory variables Ecology, 89 (2008),pp. 2623-2632
    [5]
    Bozdogan, H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions Psychometrika, 52 (1987),pp. 345-370
    [6]
    Brown, C.J., Ballabio, A., Rupert, J.L. A gene from the region of the human X inactivation centre is expressed Nature, 349 (1991),pp. 38-44
    [7]
    Cabili, M.N., Trapnell, C., Goff, L. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses Genes Dev., 25 (2011),pp. 1915-1927
    [8]
    Cagle, P.T., Allen, T.C. Lung cancer genotype-based therapy and predictive biomarkers: present and future Arch. Pathol. Lab. Med., 136 (2012),pp. 1482-1491
    [9]
    Calin, G.A., Liu, C.G., Ferracin, M. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas Cancer Cell, 12 (2007),pp. 215-229
    [10]
    Coccia, E.M., Cicala, C., Charlesworth, A. et al. Mol. Cell. Biol., 12 (1992),pp. 3514-3521
    [11]
    Coutts, A.J. In the age of technology, Occam's Razor still applies Int. J. Sports Physiol. Perform., 9 (2014),p. 741
    [12]
    Derrien, T., Johnson, R., Bussotti, G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression Genome Res., 22 (2012),pp. 1775-1789
    [13]
    Dinger, M.E., Amaral, P.P., Mercer, T.R. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation Genome Res., 18 (2008),pp. 1433-1445
    [14]
    Fehringer, G., Liu, G., Briollais, L. et al. Comparison of pathway analysis approaches using lung cancer GWAS data sets PLoS One, 7 (2012),p. e31816
    [15]
    Feng, J., Bi, C., Clark, B.S. et al. Genes Dev., 20 (2006),pp. 1470-1484
    [16]
    Graham, L.D., Pedersen, S.K., Brown, G.S. et al. Genes Cancer, 2 (2011),pp. 829-840
    [17]
    Gupta, R.A., Shah, N., Wang, K.C. et al. Nature, 464 (2010),pp. 1071-1076
    [18]
    Gutschner, T., Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view RNA Biol., 9 (2012),pp. 703-719
    [19]
    Gutschner, T., Hammerle, M., Eissmann, M. et al. Cancer Res., 73 (2013),pp. 1180-1189
    [20]
    Guttman, M., Amit, I., Garber, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals Nature, 458 (2009),pp. 223-227
    [21]
    Guttman, M., Donaghey, J., Carey, B.W. et al. LincRNAs act in the circuitry controlling pluripotency and differentiation Nature, 477 (2011),pp. 295-300
    [22]
    Guttman, M., Garber, M., Levin, J.Z. et al. Nat. Biotechnol., 28 (2010),pp. 503-510
    [23]
    Huang, D.W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [24]
    Huang, T., Liu, L., Qian, Z. et al. Using GeneReg to construct time delay gene regulatory networks BMC Res. Notes, 3 (2010),p. 142
    [25]
    Huarte, M., Guttman, M., Feldser, D. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response Cell, 142 (2010),pp. 409-419
    [26]
    Jemal, A., Bray, F., Center, M.M. et al. Global cancer statistics CA Cancer J. Clin., 61 (2011),pp. 69-90
    [27]
    Ji, P., Diederichs, S., Wang, W. et al. Oncogene, 22 (2003),pp. 8031-8041
    [28]
    Khalil, A.M., Guttman, M., Huarte, M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 11667-11672
    [29]
    Kino, T., Hurt, D.E., Ichijo, T. et al. Sci. Signal., 3 (2010),p. ra8
    [30]
    Kong, L., Zhang, Y., Ye, Z.Q. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine Nucleic Acids Res., 35 (2007),pp. W345-W349
    [31]
    Kotake, Y., Nakagawa, T., Kitagawa, K. et al. Oncogene, 30 (2011),pp. 1956-1962
    [32]
    Loewer, S., Cabili, M.N., Guttman, M. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells Nat. Genet., 42 (2010),pp. 1113-1117
    [33]
    Matouk, I.J., DeGroot, N., Mezan, S. et al. PLoS One, 2 (2007),p. e845
    [34]
    Naukkarinen, J., Surakka, I., Pietilainen, K.H. et al. Use of genome-wide expression data to mine the “Gray Zone” of GWA studies leads to novel candidate obesity genes PLoS Genet., 6 (2010),p. e1000976
    [35]
    Ørom, U.A., Derrien, T., Beringer, M. et al. Long noncoding RNAs with enhancer-like function in human cells Cell, 143 (2010),pp. 46-58
    [36]
    Pickard, M.R., Mourtada-Maarabouni, M., Williams, G.T. Biochim. Biophys. Acta, 1832 (2013),pp. 1613-1623
    [37]
    Popadin, K., Gutierrez-Arcelus, M., Dermitzakis, E.T. et al. Genetic and epigenetic regulation of human lincRNA gene expression Am. J. Hum. Genet., 93 (2013),pp. 1015-1026
    [38]
    Prensner, J.R., Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology Cancer Discov., 1 (2011),pp. 391-407
    [39]
    Prensner, J.R., Iyer, M.K., Balbin, O.A. et al. Nat. Biotechnol., 29 (2011),pp. 742-749
    [40]
    Rapp, E., Pater, J.L., Willan, A. et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer–report of a Canadian multicenter randomized trial J. Clin. Oncol., 6 (1988),pp. 633-641
    [41]
    Rikova, K., Guo, A., Zeng, Q. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer Cell, 131 (2007),pp. 1190-1203
    [42]
    Rinn, J.L., Chang, H.Y. Genome regulation by long noncoding RNAs Ann. Rev. Biochem., 81 (2012),pp. 145-166
    [43]
    Rinn, J.L., Kertesz, M., Wang, J.K. et al. Cell, 129 (2007),pp. 1311-1323
    [44]
    Seo, J.S., Ju, Y.S., Lee, W.C. et al. The transcriptional landscape and mutational profile of lung adenocarcinoma Genome Res., 22 (2012),pp. 2109-2119
    [45]
    Sheffer, J. Occam's Razor Biomed. Instrum. Technol., 48 (2014),p. 1
    [46]
    Takahashi, Y., Sawada, G., Kurashige, J. et al. Br. J. Cancer, 110 (2014),pp. 164-171
    [47]
    Tanaka, R., Satoh, H., Moriyama, M. et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma Genes Cells, 5 (2000),pp. 277-287
    [48]
    Thai, P., Statt, S., Chen, C.H. et al. Am. J. Respir. Cell. Mol. Biol., 49 (2013),pp. 204-211
    [49]
    Trapnell, C., Pachter, L., Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq Bioinformatics, 25 (2009),pp. 1105-1111
    [50]
    Trapnell, C., Roberts, A., Goff, L. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nat. Protoc., 7 (2012),pp. 562-578
    [51]
    Trapnell, C., Williams, B.A., Pertea, G. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation Nat. Biotechnol., 28 (2010),pp. 511-515
    [52]
    Ulitsky, I., Bartel, D.P. lincRNAs: genomics, evolution, and mechanisms Cell, 154 (2013),pp. 26-46
    [53]
    Wang, P., Yin, S., Zhang, Z. et al. Genome Biol., 9 (2008),p. R169
    [54]
    White, N.M., Cabanski, C.R., Silva-Fisher, J.M. et al. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer Genome Biol., 15 (2014),p. 429
    [55]
    Wightman, B., Ha, I., Ruvkun, G. Cell, 75 (1993),pp. 855-862
    [56]
    Yang, F., Huo, X.S., Yuan, S.X. et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis Mol. Cell, 49 (2013),pp. 1083-1096
    [57]
    Yang, Y., Li, H., Hou, S. et al. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell PLoS One, 8 (2013),p. e65309
    [58]
    Yin, S., Deng, W., Zheng, H. et al. Evidence that the nonsense-mediated mRNA decay pathway participates in X chromosome dosage compensation in mammals Biochem. Biophys. Res. Commun., 383 (2009),pp. 378-382
    [59]
    Yin, S., Wang, P., Deng, W. et al. Dosage compensation on the active X chromosome minimizes transcriptional noise of X-linked genes in mammals Genome Biol., 10 (2009),p. R74
    [60]
    Zhang, B., Gaiteri, C., Bodea, L.G. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease Cell, 153 (2013),pp. 707-720
    [61]
    Zhang, X.Q., Sun, S., Lam, K.F. et al. A long non-coding RNA signature in glioblastoma multiforme predicts survival Neurobiol. Dis., 58 (2013),pp. 123-131
    [62]
    Ziats, M.N., Rennert, O.M. Aberrant expression of long noncoding RNAs in autistic brain J. Mol. Neurosci., 49 (2013),pp. 589-593
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return