[1] |
Abate-Shen, C., Banach-Petrosky, W.A., Sun, X. et al. Cancer Res., 63 (2003),pp. 3886-3890
|
[2] |
Ahmad, I., Sansom, O.J., Leung, H.Y. Advances in mouse models of prostate cancer Expert Rev. Mol. Med., 10 (2008),p. e16
|
[3] |
Backman, S.A., Ghazarian, D., So, K. et al. Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 1725-1730
|
[4] |
Bjerke, G.A., Yang, C.S., Frierson, H.F. et al. Activation of Akt signaling in prostate induces a TGF β-mediated restraint on cancer progression and metastasis Oncogene, 33 (2014),pp. 3660-3667
|
[5] |
Cerami, E., Gao, J., Dogrusoz, U. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data Cancer Discov., 2 (2012),pp. 401-404
|
[6] |
Chen, Z., Trotman, L.C., Shaffer, D. et al. Nature, 436 (2005),pp. 725-730
|
[7] |
Cho, Y.G., Song, J.H., Kim, C.J. et al. Clin. Cancer Res., 13 (2007),pp. 4355-4359
|
[8] |
Di Cristofano, A., Pesce, B., Cordon-Cardo, C. et al. Pten is essential for embryonic development and tumour suppression Nat. Genet., 19 (1998),pp. 348-355
|
[9] |
Di Cristofano, A., De Acetis, M., Koff, A. et al. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse Nat. Genet., 27 (2001),pp. 222-224
|
[10] |
Ding, Z., Wu, C.J., Chu, G.C. et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression Nature, 470 (2011),pp. 269-273
|
[11] |
Dong, J.T. Chromosomal deletions and tumor suppressor genes in prostate cancer Cancer Metastasis Rev., 20 (2001),pp. 173-193
|
[12] |
Ellwood-Yen, K., Graeber, T.G., Wongvipat, J. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors Cancer Cell, 4 (2003),pp. 223-238
|
[13] |
Francis, J.C., McCarthy, A., Thomsen, M.K. et al. PLoS Genet., 6 (2010),p. e1000995
|
[14] |
Gao, H., Ouyang, X., Banach-Petrosky, W.A. et al. Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 14477-14482
|
[15] |
Gao, J., Aksoy, B.A., Dogrusoz, U. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal Sci. Signal., 6 (2013),p. pl1
|
[16] |
Grasso, C.S., Wu, Y.M., Robinson, D.R. et al. The mutational landscape of lethal castration-resistant prostate cancer Nature, 487 (2012),pp. 239-243
|
[17] |
Hollander, M.C., Blumenthal, G.M., Dennis, P.A. Nat. Rev. Cancer, 11 (2011),pp. 289-301
|
[18] |
Ittmann, M., Huang, J., Radaelli, E. et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee Cancer Res., 73 (2013),pp. 2718-2736
|
[19] |
Jeong, J.H., Wang, Z., Guimaraes, A.S. et al. BRAF activation initiates but does not maintain invasive prostate adenocarcinoma PLoS One, 3 (2008),p. e3949
|
[20] |
Kai, K., Zhang, Z., Yamashita, H. et al. BMC Cancer, 8 (2008),p. 262
|
[21] |
Kim, C.J., Song, J.H., Cho, Y.G. et al. Down-regulation of ATBF1 is a major inactivating mechanism in hepatocellular carcinoma Histopathology, 52 (2008),pp. 552-559
|
[22] |
Kim, M.J., Cardiff, R.D., Desai, N. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 2884-2889
|
[23] |
Kim, M.J., Bhatia-Gaur, R., Banach-Petrosky, W.A. et al. Cancer Res., 62 (2002),pp. 2999-3004
|
[24] |
Lu, T.L., Huang, Y.F., You, L.R. et al. Am. J. Pathol., 182 (2013),pp. 975-991
|
[25] |
Ma, X., Ziel-van der Made, A.C., Autar, B. et al. Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis Cancer Res., 65 (2005),pp. 5730-5739
|
[26] |
Maddison, L.A., Sutherland, B.W., Barrios, R.J. et al. Conditional deletion of Rb causes early stage prostate cancer Cancer Res., 64 (2004),pp. 6018-6025
|
[27] |
Oka, H., Chatani, Y., Kohno, M. et al. Constitutive activation of the 41- and 43-kDa mitogen-activated protein (MAP) kinases in the progression of prostate cancer to an androgen-independent state Int. J. Urol., 12 (2005),pp. 899-905
|
[28] |
Ouyang, X., Jessen, W.J., Al-Ahmadie, H. et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer Cancer Res., 68 (2008),pp. 2132-2144
|
[29] |
Salmena, L., Carracedo, A., Pandolfi, P.P. Tenets of PTEN tumor suppression Cell, 133 (2008),pp. 403-414
|
[30] |
Shao, L.J., Shi, H.Y., Ayala, G. et al. Haploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate Cancer Res., 68 (2008),pp. 5143-5151
|
[31] |
Shen, M.M., Abate-Shen, C. Molecular genetics of prostate cancer: new prospects for old challenges Genes Dev., 24 (2010),pp. 1967-2000
|
[32] |
Sun, X., Fu, X., Li, J. et al. Genesis, 50 (2012),pp. 819-827
|
[33] |
Sun, X., Fu, X., Li, J. et al. Neoplasia, 16 (2014),pp. 377-389
|
[34] |
Sun, X., Frierson, H.F., Chen, C. et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer Nat. Genet., 37 (2005),pp. 407-412
|
[35] |
Sun, X., Li, J., Sica, G. et al. Interruption of nuclear localization of ATBF1 during the histopathologic progression of head and neck squamous cell carcinoma Head Neck, 35 (2013),pp. 1007-1014
|
[36] |
Svensson, R.U., Haverkamp, J.M., Thedens, D.R. et al. Am. J. Pathol., 179 (2011),pp. 502-512
|
[37] |
Takahashi, S., Watanabe, T., Okada, M. et al. Noncanonical Wnt signaling mediates androgen-dependent tumor growth in a mouse model of prostate cancer Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 4938-4943
|
[38] |
Wang, S., Garcia, A.J., Wu, M. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 1480-1485
|
[39] |
Wang, S., Gao, J., Lei, Q. et al. Cancer Cell, 4 (2003),pp. 209-221
|
[40] |
Xing, C., Ci, X., Sun, X. et al. Neoplasia, 16 (2014),pp. 883-899
|
[41] |
Xu, J., Sauvageot, J., Ewing, C.M. et al. Prostate, 66 (2006),pp. 1082-1085
|
[42] |
Zhang, Z., Yamashita, H., Toyama, T. et al. Clin. Cancer Res., 11 (2005),pp. 193-198
|
[43] |
Zhou, Z., Flesken-Nikitin, A., Corney, D.C. et al. Cancer Res., 66 (2006),pp. 7889-7898
|