[1] |
Abate-Shen, C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat. Rev. Cancer, 2 (2002),pp. 777-785
|
[2] |
Abdel-Fattah, R., Xiao, A., Bomgardner, D. et al. J. Pathol., 209 (2006),pp. 15-24
|
[3] |
Abdouh, M., Facchino, S., Chatoo, W. et al. BMI1 sustains human glioblastoma multiforme stem cell renewal J. Neurosci., 29 (2009),pp. 8884-8896
|
[4] |
Bao, S., Wu, Q., McLendon, R.E. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response Nature, 444 (2006),pp. 756-760
|
[5] |
Baylin, S.B. DNA methylation and gene silencing in cancer Nat. Clin. Pract. Oncol., 2 (2005),pp. S4-S11
|
[6] |
Baysan, M., Woolard, K., Bozdag, S. et al. Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived glioma stem cells PLoS One, 9 (2014),p. e94045
|
[7] |
Bleau, A.M., Howard, B.M., Taylor, L.A. et al. New strategy for the analysis of phenotypic marker antigens in brain tumor-derived neurospheres in mice and humans Neurosurg. Focus, 24 (2008),p. E28
|
[8] |
Bredel, M., Scholtens, D.M., Harsh, G.R. et al. A network model of a cooperative genetic landscape in brain tumors JAMA, 302 (2009),pp. 261-275
|
[9] |
Cadieux, B., Ching, T.-T., VandenBerg, S.R. et al. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation Cancer Res., 66 (2006),pp. 8469-8476
|
[10] |
Carlson, B.L., Pokorny, J.L., Schroeder, M.A. et al. Curr. Protoc. Pharmacol., 52 (2011),pp. 1-14
|
[11] |
Cillo, C., Cantile, M., Mortarini, R. et al. Int. J. Cancer, 66 (1996),pp. 692-697
|
[12] |
De Bacco, F., Casanova, E., Medico, E. et al. Cancer Res., 72 (2012),pp. 4537-4550
|
[13] |
Dirks, P.B. Brain tumor stem cells: bringing order to the chaos of brain cancer J. Clin. Oncol., 26 (2008),pp. 2916-2924
|
[14] |
Dong, W.J., Chen, X.B., Xie, J. et al. Epigenetic inactivation and tumor suppressor activity of HAI-2/SPINT2 in gastric cancer Int. J. Cancer, 127 (2010),pp. 1526-1534
|
[15] |
Engstrom, P.G., Tommei, D., Stricker, S.H. et al. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival Genome Med., 4 (2012),p. 76
|
[16] |
Eramo, A., Ricci-Vitiani, L., Zeuner, A. et al. Chemotherapy resistance of glioblastoma stem cells Cell Death Differ., 13 (2006),pp. 1238-1241
|
[17] |
Galli, R., Binda, E., Orfanelli, U. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma Cancer Res., 64 (2004),pp. 7011-7021
|
[18] |
Gravendeel, L.A.M., Kouwenhoven, M.C.M., Gevaert, O. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology Cancer Res., 69 (2009),pp. 9065-9072
|
[19] |
Hamasuna, R., Kataoka, H., Meng, J.Y. et al. Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells Int. J. Cancer, 93 (2001),pp. 339-345
|
[20] |
Hansen, K.D., Timp, W., Bravo, H.C. et al. Increased methylation variation in epigenetic domains across cancer types Nat. Genet., 43 (2011),pp. 768-775
|
[21] |
Hegi, M.E., Diserens, A.C., Gorlia, T. et al. N. Engl. J. Med., 352 (2005),pp. 997-1003
|
[22] |
Higgins, D.M., Wang, R., Milligan, B. et al. Brain tumor stem cell multipotency correlates with nanog expression and extent of passaging in human glioblastoma xenografts Oncotarget, 4 (2013),pp. 792-801
|
[23] |
Inagaki, A., Soeda, A., Oka, N. et al. Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions Biochem. Biophys. Res. Commun., 361 (2007),pp. 586-592
|
[24] |
Johnson, D., O'Neill, B. Glioblastoma survival in the United States before and during the temozolomide era J. Neurooncol., 107 (2012),pp. 359-364
|
[25] |
Jones, P.A., Baylin, S.B. The fundamental role of epigenetic events in cancer Nat. Rev. Genet., 3 (2002),pp. 415-428
|
[26] |
Jones, P.A., Baylin, S.B. The epigenomics of cancer Cell, 128 (2007),pp. 683-692
|
[27] |
Joo, K.M., Jin, J., Kim, E. et al. MET signaling regulates glioblastoma stem cells Cancer Res., 72 (2012),pp. 3828-3838
|
[28] |
Kamnasaran, D., Qian, B., Hawkins, C. et al. GATA6 is an astrocytoma tumor suppressor gene identified by gene trapping of mouse glioma model Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 8053-8058
|
[29] |
Kongkham, P.N., Northcott, P.A., Ra, Y.S. et al. Cancer Res., 68 (2008),pp. 9945-9953
|
[30] |
Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
|
[31] |
Lee, J., Kotliarova, S., Kotliarov, Y. et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines Cancer Cell, 9 (2006),pp. 391-403
|
[32] |
Lee, T.I., Jenner, R.G., Boyer, L.A. et al. Control of developmental regulators by Polycomb in human embryonic stem cells Cell, 125 (2006),pp. 301-313
|
[33] |
Li, Y., Li, A., Glas, M. et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 9951-9956
|
[34] |
Lin, N., Di, C., Bortoff, K. et al. Mol. Cancer Res., 10 (2012),pp. 208-217
|
[35] |
Martinez, R., Martin-Subero, J.I., Rohde, V. et al. A microarray-based DNA methylation study of glioblastoma multiforme Epigenetics, 4 (2009),pp. 255-264
|
[36] |
McTavish, N., Copeland, L.A., Saville, M.K. et al. Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-κB- and p53-regulated gene targets Cell Death Differ., 14 (2007),pp. 1700-1710
|
[37] |
Meissner, A., Mikkelsen, T.S., Gu, H. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells Nature, 454 (2008),pp. 766-770
|
[38] |
Morris, M.R., Gentle, D., Abdulrahman, M. et al. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma Cancer Res., 65 (2005),pp. 4598-4606
|
[39] |
Munoz, P., Iliou, M.S., Esteller, M. Epigenetic alterations involved in cancer stem cell reprogramming Mol. Oncol., 6 (2012),pp. 620-636
|
[40] |
Murat, A., Migliavacca, E., Gorlia, T. et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma J. Clin. Oncol., 26 (2008),pp. 3015-3024
|
[41] |
Natsume, A., Ito, M., Katsushima, K. et al. Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma Cancer Res., 73 (2013),pp. 4559-4570
|
[42] |
Noushmehr, H., Weisenberger, D.J., Diefes, K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma Cancer Cell, 17 (2010),pp. 510-522
|
[43] |
Ohm, J.E., McGarvey, K.M., Yu, X. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing Nat. Genet., 39 (2007),pp. 237-242
|
[44] |
Parr, C., Watkins, G., Mansel, R.E. et al. The hepatocyte growth factor regulatory factors in human breast cancer Clin. Cancer Res., 10 (2004),pp. 202-211
|
[45] |
Pei, L., Choi, J.H., Liu, J. et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia Epigenetics, 7 (2012),pp. 567-578
|
[46] |
Rath, P., Lal, B., Ajala, O. et al. In vivo c-met pathway inhibition depletes human glioma xenografts of tumor-propagating stem-like cells Transl. Oncol., 6 (2013),pp. 104-111
|
[47] |
Sarkaria, J.N., Carlson, B.L., Schroeder, M.A. et al. Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response Clin. Cancer Res., 12 (2006),pp. 2264-2271
|
[48] |
Selamat, S.A., Galler, J.S., Joshi, A.D. et al. PLoS One, 6 (2011),p. e21443
|
[49] |
Singh, S.K., Hawkins, C., Clarke, I.D. et al. Identification of human brain tumour initiating cells Nature, 432 (2004),pp. 396-401
|
[50] |
Stricker, S.H., Feber, A., Engstrom, P.G. et al. Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner Genes Dev., 27 (2013),pp. 654-659
|
[51] |
TCGA Comprehensive genomic characterization defines human glioblastoma genes and core pathways Nature, 455 (2008),pp. 1061-1068
|
[52] |
Uhlmann, K., Rohde, K., Zeller, C. et al. Distinct methylation profiles of glioma subtypes Int. J. Cancer, 106 (2003),pp. 52-59
|
[53] |
Varley, K.E., Gertz, J., Bowling, K.M. et al. Dynamic DNA methylation across diverse human cell lines and tissues Genome Res., 23 (2013),pp. 555-567
|
[54] |
Vescovi, A.L., Galli, R., Reynolds, B.A. Brain tumour stem cells Nat. Rev. Cancer, 6 (2006),pp. 425-436
|
[55] |
Ward, R.J., Dirks, P.B. Cancer stem cells: at the headwaters of tumor development Annu. Rev. Pathol., 2 (2007),pp. 175-189
|
[56] |
Widschwendter, M., Fiegl, H., Egle, D. et al. Epigenetic stem cell signature in cancer Nat. Genet., 39 (2007),pp. 157-158
|
[57] |
Wild, L., Flanagan, J.M. Genome-wide hypomethylation in cancer may be a passive consequence of transformation Biochim. Biophys. Acta, 1806 (2010),pp. 50-57
|
[58] |
Wu, X., Rauch, T.A., Zhong, X. et al. CpG island hypermethylation in human astrocytomas Cancer Res., 70 (2010),pp. 2718-2727
|
[59] |
Wurdak, H., Zhu, S., Romero, A. et al. An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation Cell Stem Cell, 6 (2010),pp. 37-47
|