[1] |
Bennett, M.D., Finch, R.A., Barclay, I.R. Chromosoma, 54 (1976),pp. 175-200
|
[2] |
Blower, M.D., Karpen, G.H. Nat. Cell Biol., 3 (2001),pp. 730-739
|
[3] |
Blower, M.D., Sullivan, B.A., Karpen, G.H. Conserved organization of centromeric chromatin in flies and humans Dev. Cell, 2 (2002),pp. 319-330
|
[4] |
Chaudhary, H.K., Tayeng, T., Kaila, V. et al. Nucleus, 56 (2013),pp. 7-14
|
[5] |
Collins, K.A., Furuyama, S., Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant Curr. Biol., 14 (2004),pp. 1968-1972
|
[6] |
Comai, L., Tyagi, A.P., Winter, K. et al. Plant Cell, 12 (2000),pp. 1551-1568
|
[7] |
Davies, D. Chromosome elimination in inter-specific hybrids Heredity, 32 (1974),pp. 267-270
|
[8] |
Earnshaw, W.C., Rothfield, N. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma Chromosoma, 91 (1985),pp. 313-321
|
[9] |
Falk, D.E., Kasha, K.J. Theor. Appl. Genet., 64 (1983),pp. 303-307
|
[10] |
Henikoff, S., Ahmad, K., Malik, H.S. The centromere paradox: stable inheritance with rapidly evolving DNA Science, 293 (2001),pp. 1098-1102
|
[11] |
Howman, E.V., Fowler, K.J., Newson, A.J. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 1148-1153
|
[12] |
Inagaki, M., Tahir, M. Jpn. J. Breed., 40 (1990),pp. 209-216
|
[13] |
Jin, W., Melo, J.R., Nagaki, K. et al. Maize centromeres: organization and functional adaptation in the genetic background of oat Plant Cell, 16 (2004),pp. 571-581
|
[14] |
Kim, N.S., Armstrong, K.C., Fedak, G. et al. Genome, 45 (2002),pp. 165-174
|
[15] |
Laurie, D.A., Bennett, M.D. Plant Breed., 100 (1988),pp. 73-82
|
[16] |
Laurie, D.A., Bennett, M.D. The production of haploid wheat plants from wheat × maize crosses Theor. Appl. Genet., 76 (1988),pp. 393-397
|
[17] |
Laurie, D.A., Bennett, M.D. The timing of chromosome elimination in hexaploid wheat × maize crosses Genome, 32 (1989),pp. 953-961
|
[18] |
Laurie, D.A., Reymondie, S. High-frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat-varieties and maize Plant Breed., 106 (1991),pp. 182-189
|
[19] |
Linde-Laursen, I., von Bothmer, R. Genome, 42 (1999),pp. 225-236
|
[20] |
Liu, C., Liu, J., Li, H. et al. Cytogenet. Genome Res., 129 (2010),pp. 241-249
|
[21] |
Malik, H.S., Henikoff, S. Genetics, 157 (2001),pp. 1293-1298
|
[22] |
Matzk, F., Mahn, A. Improved techniques for haploid production in wheat using chromosome elimination Plant Breed., 113 (1994),pp. 125-129
|
[23] |
Mendiburo, M.J., Padeken, J., Fulop, S. et al. Science, 334 (2011),pp. 686-690
|
[24] |
Michel, B. Replication fork arrest and DNA recombination Trends Biochem. Sci., 25 (2000),pp. 173-178
|
[25] |
Mochida, K., Tsujimoto, H., Sasakuma, T. Confocal analysis of chromosome behavior in wheat × maize zygotes Genome, 47 (2004),pp. 199-205
|
[26] |
Moreno-Moreno, O., Torras-Llort, M., Azorin, F. Nucleic Acids Res., 34 (2006),pp. 6247-6255
|
[27] |
Nagaki, K., Kashihara, K., Murata, M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco Chromosoma, 118 (2009),pp. 249-257
|
[28] |
O'donoughue, L.S., Bennett, M.D. Durum-wheat haploid production using maize wide-crossing Theor. Appl. Genet., 89 (1994),pp. 559-566
|
[29] |
Paterson, A.H., Bowers, J.E., Chapman, B.A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 9903-9908
|
[30] |
Ravi, M., Kwong, P.N., Menorca, R.M. et al. Genetics, 186 (2010),pp. 461-471
|
[31] |
Sadasivaiah, R.S., Orshinsky, B.R., Kozub, G.C. Production of wheat haploids using anther culture and wheat × maize hybridization techniques Cereal Res. Commun., 27 (1999),pp. 33-40
|
[32] |
Sanei, M., Pickering, R., Kumke, K. et al. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids Proc. Natl. Acad. Sci. USA, 108 (2011),pp. E498-E505
|
[33] |
Schwarzacher, R.T., Finch, R.A., Smith, J.B. et al. J. Cell Sci., 87 (1987),pp. 291-304
|
[34] |
Suenaga, K., Nakajima, K. Plant Cell Rep., 8 (1989),pp. 263-266
|
[35] |
Suominen, J. Lutukka, 10 (1994),pp. 77-84
|
[36] |
Talbert, P.B., Masuelli, R., Tyagi, A.P. et al. Plant Cell, 14 (2002),pp. 1053-1066
|
[37] |
Teo, C.H., Lermontova, I., Houben, A. et al. Chromosoma, 122 (2013),pp. 233-241
|
[38] |
Wang, G., He, Q., Liu, F. et al. Chromosoma, 120 (2011),pp. 353-365
|
[39] |
Weiss, M.C., Green, H. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes Proc. Natl. Acad. Sci. USA, 58 (1967),pp. 1104-1111
|
[40] |
Xing, L.P., Wang, H.Z., Jiang, Z.N. et al. Transformation of wheat thaumatin-like protein gene and diseases resistance analysis of the transgenic plants Acta Agron. Sin., 34 (2008),pp. 349-354
|
[41] |
Yuan, J., Guo, X., Hu, J. et al. New Phytol., 206 (2014),pp. 839-851
|
[42] |
Zenkteler, M., Nitzsche, W. Wide hybridization experiments in cereals Theor. Appl. Genet., 68 (1984),pp. 311-315
|
[43] |
Zhong, C.X., Marshall, J.B., Topp, C. et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3 Plant Cell, 14 (2002),pp. 2825-2836
|