5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 7
Jul.  2015
Turn off MathJax
Article Contents

TCP1 Modulates DWF4 Expression via Directly Interacting with the GGNCCC Motifs in the Promoter Region of DWF4 in Arabidopsis thaliana

doi: 10.1016/j.jgg.2015.04.009
More Information
  • Corresponding author: E-mail address: lijia@lzu.edu.cn (Jia Li)
  • Received Date: 2015-02-10
  • Accepted Date: 2015-04-01
  • Rev Recd Date: 2015-03-30
  • Available Online: 2015-05-27
  • Publish Date: 2015-07-20
  • Our previous studies indicated that TCP1 is a positive regulator of the brassinosteroid (BR) biosynthesis pathway by mediating the transcription of DWF4, one of the key BR biosynthetic genes in Arabidopsis thaliana. Whether TCP1 can directly bind to the promoter region of DWF4, however, has not been experimentally demonstrated. Here we provide our biochemical and genetic evidence that TCP1 mediates the expression of DWF4 by directly associating with the two GGNCCC motifs in the promoter region of DWF4. The expression levels of DWF4 are positively correlated to TCP1 abundance in planta. Electrophoretic mobility shift assays (EMSAs) using various synthetic DNA fragments suggest that the GGNCCC core sequence is critical for TCP1 binding. DNA sequences flanking the GGNCCC motifs are less important for the association of TCP1. Using DWF4p-GUS transgenic plants as an assay system, it is clearly indicated that these motifs are required for the positive regulation of DWF4 transcription by TCP1. More significantly, whole genome microarray analyses indicate that TCP1 can directly or indirectly regulate the expression of many other genes known to be important for normal plant growth and development.
  • loading
  • [1]
    An, J., Guo, Z., Gou, X. et al. Plant Signal Behav., 6 (2011),pp. 1117-1118
    [2]
    Clouse, S.D., Langford, M., McMorris, T.C. Plant Physiol., 111 (1996),pp. 671-678
    [3]
    Clouse, S.D., Sasse, J.M. BRASSINOSTEROIDS: essential regulators of plant growth and development Annu. Rev. Plant Physiol. Plant Mol. Biol., 49 (1998),pp. 427-451
    [4]
    Cubas, P., Lauter, N., Doebley, J. et al. The TCP domain: a motif found in proteins regulating plant growth and development Plant J., 18 (1999),pp. 215-222
    [5]
    Gampala, S.S., Kim, T.W., He, J.X. et al. Dev. Cell, 13 (2007),pp. 177-189
    [6]
    Gou, X., Li, J. Activation tagging Methods Mol. Biol., 876 (2012),pp. 117-133
    [7]
    Gou, X., Yin, H., He, K. et al. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling PLoS Genet., 8 (2012),p. e1002452
    [8]
    Guo, Z., Fujioka, S., Blancaflor, E.B. et al. Plant Cell, 22 (2010),pp. 1161-1173
    [9]
    He, K., Xu, S., Li, J. BAK1 directly regulates brassinosteroid perception and BRI1 activation J. Integr. Plant Biol., 55 (2013),pp. 1264-1270
    [10]
    He, J.X., Gendron, J.M., Sun, Y. et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses Science, 307 (2005),pp. 1634-1638
    [11]
    Hothorn, M., Belkhadir, Y., Dreux, M. et al. Structural basis of steroid hormone perception by the receptor kinase BRI1 Nature, 474 (2011),pp. 467-471
    [12]
    Husar, S., Berthiller, F., Fujioka, S. et al. BMC Plant Biol., 11 (2011),p. 51
    [13]
    Kim, T.W., Guan, S., Burlingame, A.L. et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2 Mol. Cell, 43 (2011),pp. 561-571
    [14]
    Kim, T.W., Wang, Z.Y. Brassinosteroid signal transduction from receptor kinases to transcription factors Annu. Rev. Plant Biol., 61 (2010),pp. 681-704
    [15]
    Kosugi, S., Ohashi, Y. DNA binding and dimerization specificity and potential targets for the TCP protein family Plant J., 30 (2002),pp. 337-348
    [16]
    Li, J., Du, J., He, K. et al.
    [17]
    Li, J., Nam, K.H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase Science, 295 (2002),pp. 1299-1301
    [18]
    Li, J., Tax, F.E. Receptor-like kinases: key regulators of plant development and defense J. Integr. Plant Biol., 55 (2013),pp. 1184-1187
    [19]
    Li, J., Wen, J., Lease, K.A. et al. Cell, 110 (2002),pp. 213-222
    [20]
    Lohse, M., Nunes-Nesi, A., Kruger, P. et al. Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis Plant Physiol., 153 (2010),pp. 642-651
    [21]
    Lozano-Duran, R., Zipfel, C. Trade-off between growth and immunity: role of brassinosteroids Trends Plant Sci., 20 (2014),pp. 12-19
    [22]
    Luo, D., Carpenter, R., Copsey, L. et al. Cell, 99 (1999),pp. 367-376
    [23]
    Martin-Trillo, M., Cubas, P. TCP genes: a family snapshot ten years later Trends Plant Sci., 15 (2010),pp. 31-39
    [24]
    Nam, K.H., Li, J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling Cell, 110 (2002),pp. 203-212
    [25]
    Neff, M.M., Nguyen, S.M., Malancharuvil, E.J. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 15316-15323
    [26]
    Ni, Z., Kim, E.D., Ha, M. et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids Nature, 457 (2009),pp. 327-331
    [27]
    Poppenberger, B., Fujioka, S., Soeno, K. et al. Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 15253-15258
    [28]
    Poppenberger, B., Rozhon, W., Khan, M. et al. CESTA, a positive regulator of brassinosteroid biosynthesis EMBO J., 30 (2011),pp. 1149-1161
    [29]
    Roh, H., Jeong, C.W., Fujioka, S. et al. Plant Physiol., 159 (2012),pp. 696-709
    [30]
    Rouleau, M., Marsolais, F., Richard, M. et al. J. Biol. Chem., 274 (1999),pp. 20925-20930
    [31]
    Santiago, J., Henzler, C., Hothorn, M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases Science, 341 (2013),pp. 889-892
    [32]
    She, J., Han, Z., Kim, T.W. et al. Structural insight into brassinosteroid perception by BRI1 Nature, 474 (2011),pp. 472-476
    [33]
    Shiu, S.H., Karlowski, W.M., Pan, R. et al. Plant Cell, 16 (2004),pp. 1220-1234
    [34]
    Sun, Y., Fan, X.Y., Cao, D.M. et al. Dev. Cell, 19 (2010),pp. 765-777
    [35]
    Sun, Y., Han, Z., Tang, J. et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide Cell Res., 23 (2013),pp. 1326-1329
    [36]
    Suzuki, T., Sakurai, K., Ueguchi, C. et al. Plant Cell Physiol., 42 (2001),pp. 37-45
    [37]
    Symons, G.M., Reid, J.B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels Plant Physiol., 135 (2004),pp. 2196-2206
    [38]
    Tang, W., Kim, T.W., Oses-Prieto, J.A. et al. Science, 321 (2008),pp. 557-560
    [39]
    Tang, W., Yuan, M., Wang, R. et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 Nat. Cell Biol., 13 (2011),pp. 124-131
    [40]
    Wang, X., Chory, J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane Science, 313 (2006),pp. 1118-1122
    [41]
    Wang, X., Goshe, M.B., Soderblom, E.J. et al. Plant Cell, 17 (2005),pp. 1685-1703
    [42]
    Wang, Z.Y., Bai, M.Y., Oh, E. et al. Brassinosteroid signaling network and regulation of photomorphogenesis Annu. Rev. Genet., 46 (2012),pp. 701-724
    [43]
    Wang, Z.Y., Nakano, T., Gendron, J. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis Dev. Cell, 2 (2002),pp. 505-513
    [44]
    Yang, Z., Zhang, C., Yang, X. et al. New Phytol., 203 (2014),pp. 437-448
    [45]
    Yin, Y., Wang, Z.Y., Mora-Garcia, S. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation Cell, 109 (2002),pp. 181-191
    [46]
    Yu, X., Li, L., Zola, J. et al. Plant J., 65 (2011),pp. 634-646
    [47]
    Yuan, T., Fujioka, S., Takatsuto, S. et al. Plant J., 51 (2007),pp. 220-233
    [48]
    Zhao, B., Li, J. Regulation of brassinosteroid biosynthesis and inactivation J. Integr. Plant Biol., 54 (2012),pp. 746-759
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return