[1] |
Addo-Quaye, C., Miller, W., Axtell, M.J. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets Bioinformatics, 25 (2009),pp. 130-131
|
[2] |
Anders, S., Huber, W. Differential expression analysis for sequence count data Genome Biol., 11 (2010),p. R106
|
[3] |
Barrera-Figueroa, B.E., Gao, L., Wu, Z.G. et al. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice BMC Plant Biol., 12 (2012),p. 132
|
[4] |
Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M. et al. Widespread translational inhibition by plant miRNAs and siRNAs Science, 320 (2008),pp. 1185-1190
|
[5] |
Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
|
[6] |
Chen, C.F., Ridzon, D.A., Broomer, A.J. et al. Real-time quantification of microRNAs by stem-loop RT-PCR Nucleic Acids Res., 33 (2005),p. e179
|
[7] |
Chen, X.M. MicroRNA biogenesis and function in plants FEBS Lett., 579 (2005),pp. 5923-5931
|
[8] |
Dai, X.B., Zhao, P.X. psRNATarget: a plant small RNA target analysis server Nucleic Acids Res., 39 (2011),pp. W155-W159
|
[9] |
Dugas, D.V., Bartel, B. MicroRNA regulation of gene expression in plants Curr. Opin. Plant Biol., 7 (2004),pp. 512-520
|
[10] |
Fujita, Y., Fujita, M., Shinozaki, K. et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants J. Plant Res., 124 (2011),pp. 509-525
|
[11] |
Gao, S.P., Fang, J., Xu, F. et al. Plant Physiol., 165 (2014),pp. 1035-1046
|
[12] |
Gavnholt, B., Larsen, K. Molecular biology of plant laccases in relation to lignin formation Physiol. Plant., 116 (2002),pp. 273-280
|
[13] |
Goddijn, O.J.M., Verwoerd, T.C., Voogd, E. et al. Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants Plant Physiol., 113 (1997),pp. 181-190
|
[14] |
Griffiths-Jones, S., Hui, J.H.L., Marco, A. et al. MicroRNA evolution by arm switching EMBO Rep., 12 (2011),pp. 172-177
|
[15] |
Hiei, Y., Ohta, S., Komari, T. et al. Plant J., 6 (1994),pp. 271-282
|
[16] |
Jain, M., Nijhawan, A., Tyagi, A.K. et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR Biochem. Biophys. Res. Commun., 345 (2006),pp. 646-651
|
[17] |
Kazama, T., Nakamura, T., Watanabe, M. et al. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice Plant J., 55 (2008),pp. 619-628
|
[18] |
Khraiwesh, B., Zhu, J.K., Zhu, J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants Biochim. Biophys. Acta, 1819 (2012),pp. 137-148
|
[19] |
Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing Nat. Rev. Mol. Cell Biol., 6 (2005),pp. 376-385
|
[20] |
Klie, S., Nikoloski, Z. The choice between Mapman and Gene Ontology for automated gene function prediction in plant science Front. Genet., 3 (2012),p. 115
|
[21] |
Kozomara, A., Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data Nucleic Acids Res., 39 (2011),pp. D152-D157
|
[22] |
Kozomara, A., Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data Nucleic Acids Res., 42 (2014),pp. D68-D73
|
[23] |
Kurihara, Y., Watanabe, Y. Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 12753-12758
|
[24] |
Lee, S.C., Luan, S. ABA signal transduction at the crossroad of biotic and abiotic stress responses Plant Cell Environ., 35 (2012),pp. 53-60
|
[25] |
Li, R.Q., Yu, C., Li, Y.R. et al. SOAP2: an improved ultrafast tool for short read alignment Bioinformatics, 25 (2009),pp. 1966-1967
|
[26] |
Li, Y.F., Zheng, Y., Addo-Quaye, C. et al. Transcriptome-wide identification of microRNA targets in rice Plant J., 62 (2010),pp. 742-759
|
[27] |
Liang, C.Z., Wang, Y.Q., Zhu, Y.N. et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 10013-10018
|
[28] |
Lunn, J.E. Gene families and evolution of trehalose metabolism in plants Funct. Plant Biol., 34 (2007),pp. 550-563
|
[29] |
Marco, A., Hui, J.H.L., Ronshaugen, M. et al. Functional shifts in insect microRNA evolution Genome Biol. Evol., 2 (2010),pp. 686-696
|
[30] |
Meng, Y.J., Gou, L.F., Chen, D.J. et al. High-throughput degradome sequencing can be used to gain insights into microRNA precursor metabolism J. Exp. Bot., 61 (2010),pp. 3833-3837
|
[31] |
Morin, R.D., Aksay, G., Dolgosheina, E. et al. Genome Res., 18 (2008),pp. 571-584
|
[32] |
Nemhauser, J.L., Hong, F.X., Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses Cell, 126 (2006),pp. 467-475
|
[33] |
Okamura, K., Phillips, M.D., Tyler, D.M. et al. The regulatory activity of microRNA star species has substantial influence on microRNA and 3' UTR evolution Nat. Struct. Mol. Biol., 15 (2008),pp. 354-363
|
[34] |
Qiu, J.L., Zhou, L., Yun, B.W. et al. Plant Physiol., 148 (2008),pp. 212-222
|
[35] |
Reyes, J.L., Chua, N.H. Plant J., 49 (2007),pp. 592-606
|
[36] |
Romero, C., Belles, J.M., Vaya, J.L. et al. Planta, 201 (1997),pp. 293-297
|
[37] |
Sato, Y., Antonio, B.A., Namiki, N. et al. Nucleic Acids Res., 39 (2011),pp. D1141-D1148
|
[38] |
Schwab, R., Palatnik, J.F., Riester, M. et al. Specific effects of microRNAs on the plant transcriptome Dev. Cell, 8 (2005),pp. 517-527
|
[39] |
Shima, S., Matsui, H., Tahara, S. et al. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes FEBS J., 274 (2007),pp. 1192-1201
|
[40] |
Song, J.B., Gao, S., Sun, D. et al. BMC Plant Biol., 13 (2013),p. 210
|
[41] |
Sunkar, R., Chinnusamy, V., Zhu, J.H. et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation Trends Plant Sci., 12 (2007),pp. 301-309
|
[42] |
Sunkar, R., Zhou, X.F., Zheng, Y. et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing BMC Plant Biol., 8 (2008),p. 25
|
[43] |
Thimm, O., Blasing, O., Gibon, Y. et al. Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes Plant J., 37 (2004),pp. 914-939
|
[44] |
Thirumurugan, T., Ito, Y., Kubo, T. et al. Mol. Genet. Genomics, 279 (2008),pp. 279-289
|
[45] |
Valencia-Sanchez, M.A., Liu, J.D., Hannon, G.J. et al. Control of translation and mRNA degradation by miRNAs and siRNAs Genes Dev., 20 (2006),pp. 515-524
|
[46] |
Verrier, P.J., Bird, D., Buria, B. et al. Plant ABC proteins - a unified nomenclature and updated inventory Trends Plant Sci., 13 (2008),pp. 151-159
|
[47] |
Wu, H.J., Ma, Y.K., Chen, T. et al. PsRobot: a web-based plant small RNA meta-analysis toolbox Nucleic Acids Res., 40 (2012),pp. W22-W28
|
[48] |
Xu, G., Wu, J.Y., Zhou, L.L. et al. Characterization of the small RNA transcriptomes of androgen dependent and independent prostate cancer cell line by deep sequencing PLoS One, 5 (2010),p. e15519
|
[49] |
Yan, J., Gu, Y.Y., Jia, X.Y. et al. Plant Cell, 24 (2012),pp. 415-427
|
[50] |
Yang, J.S., Phillips, M.D., Betel, D. et al. Widespread regulatory activity of vertebrate microRNA* species RNA, 17 (2011),pp. 312-326
|
[51] |
Zhang, B.H., Pan, X.P., Cobb, G.P. et al. Plant microRNA: a small regulatory molecule with big impact Dev. Biol., 289 (2006),pp. 3-16
|
[52] |
Zhang, Y., Zhu, X.J., Chen, X. et al. BMC Plant Biol., 14 (2014),p. 271
|
[53] |
Zhu, J.K. Salt and drought stress signal transduction in plants Annu. Rev. Plant Biol., 53 (2002),pp. 247-273
|