5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 6
Jun.  2015
Turn off MathJax
Article Contents

Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants

doi: 10.1016/j.jgg.2015.03.012
More Information
  • Corresponding author: E-mail address: ljiang@cuhk.edu.hk (Liwen Jiang)
  • Received Date: 2015-02-09
  • Accepted Date: 2015-03-27
  • Rev Recd Date: 2015-03-21
  • Available Online: 2015-05-14
  • Publish Date: 2015-06-20
  • Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype ofFREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants.
  • loading
  • [1]
    An, F., Zhao, Q., Ji, Y. et al. Plant Cell, 22 (2010),pp. 2384-2401
    [2]
    Aoyama, T., Chua, N.H. A glucocorticoid-mediated transcriptional induction system in transgenic plants Plant J., 11 (1997),pp. 605-612
    [3]
    Bar, M., Avni, A. Endosomal trafficking and signaling in plant defense responses Curr. Opin. Plant Biol., 22 (2014),pp. 86-92
    [4]
    Bassham, D.C., Brandizzi, F., Otegui, M.S. et al. Arabidopsis Book, 6 (2008),p. e0116
    [5]
    Cai, Y., Zhuang, X.H., Gao, C.J. et al. Plant Physiol., 165 (2014),pp. 1328-1343
    [6]
    Calcagno-Pizarelli, A.M., Hervas-Aguilar, A., Galindo, A. et al. J. Cell Sci., 124 (2011),pp. 4064-4076
    [7]
    Cheng, Y., Qin, G., Dai, X. et al. Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18825-18829
    [8]
    Cui, Y., Zhao, Q., Gao, C. et al. Plant Cell, 26 (2014),pp. 2080-2097
    [9]
    Cvrckova, F., Grunt, M., Bezvoda, R. et al. Evolution of the land plant exocyst complexes Front. Plant Sci., 3 (2012),p. 159
    [10]
    Ding, Y., Wang, J., Wang, J.Q. et al. Unconventional protein secretion Trends Plant Sci., 17 (2012),pp. 606-615
    [11]
    Ding, Y., Wang, J., Lai, J.H.C. et al. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals Mol. Biol. Cell, 25 (2014),pp. 412-426
    [12]
    Ding, Y., Robinson, D.G., Jiang, L. Unconventional protein secretion (UPS) pathways in plants Curr. Opin. Cell Biol., 29 (2014),pp. 107-115
    [13]
    Galvao, V.C., Nordstrom, K.J., Lanz, C. et al. Synteny-based mapping-by-sequencing enabled by targeted enrichment Plant J., 71 (2012),pp. 517-526
    [14]
    Gao, C., Cai, Y., Wang, Y. et al. Retention mechanisms for ER and Golgi membrane proteins Trends Plant Sci., 19 (2014),pp. 508-515
    [15]
    Gao, C., Luo, M., Zhao, Q. et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth Curr. Biol., 24 (2014),pp. 2556-2563
    [16]
    Gao, C., Zhuang, X., Cui, Y. et al. Proc. Natl. Acad. Sci. USA, 112 (2015),pp. 1886-1891
    [17]
    Henne, W.M., Buchkovich, N.J., Emr, S.D. The ESCRT pathway Dev. Cell, 21 (2011),pp. 77-91
    [18]
    Lam, S.K., Tse, Y.C., Robinson, D.G. et al. Tracking down the elusive early endosome Trends Plant Sci., 12 (2007),pp. 497-505
    [19]
    Lam, S.K., Cai, Y., Hillmer, S. et al. SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells Plant Physiol., 147 (2008),pp. 1637-1645
    [20]
    Leung, K.F., , Field, M.C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage Traffic, 9 (2008),pp. 1698-1716
    [21]
    Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
    [22]
    Li, H., Handsaker, B., Wysoker, A. et al. The Sequence Alignment/Map format and SAM tools Bioinformatics, 25 (2009),pp. 2078-2079
    [23]
    Li, S., Liu, L., Zhuang, X. et al. Cell, 153 (2013),pp. 562-574
    [24]
    Ling, Q.H., Huang, W.H., Baldwin, A. et al. Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system Science, 338 (2012),pp. 655-659
    [25]
    Manavella, P.A., Hagmann, J., Ott, F. et al. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1 Cell, 151 (2012),pp. 859-870
    [26]
    Page, D.R., Grossniklaus, U. Nature, 3 (2002),pp. 124-136
    [27]
    Park, W., Li, J., Song, R. et al. Curr. Biol., 12 (2002),pp. 1484-1495
    [28]
    Reyes, F.C., Buono, R., Otegui, M.S. Plant endosomal trafficking pathways Curr. Opin. Plant Biol., 14 (2011),pp. 666-673
    [29]
    Samaj, J., Muller, J., Beck, M. et al. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes Trends Plant Sci., 11 (2006),pp. 594-600
    [30]
    Schneeberger, K., Ossowski, S., Lanz, C. et al. SHOREmap: simultaneous mapping and mutation identification by deep sequencing Nat. Methods, 6 (2009),pp. 550-551
    [31]
    Spitzer, C., Reyes, F.C., Buono, R. et al. Plant Cell, 21 (2009),pp. 749-766
    [32]
    Tanaka, H., Kitakura, S., De Rycke, R. et al. Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking Curr. Biol., 19 (2009),pp. 391-397
    [33]
    Teh, O.K., Hofius, D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity J. Exp. Bot., 65 (2014),pp. 1297-1312
    [34]
    Wang, J., Ding, Y., Wang, J.Q. et al. Plant Cell, 22 (2010),pp. 4009-4030
    [35]
    Wesley, S.V., Helliwell, C.A., Smith, N.A. et al. Construct design for efficient, effective and high-throughput gene silencing in plants Plant J., 27 (2001),pp. 581-590
    [36]
    Zhang, J., Madden, T.L. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation Genome Res., 7 (1997),pp. 649-656
    [37]
    Zhang, X., Zhu, Y., Liu, X. et al. Science, 348 (2015),pp. 120-123
    [38]
    Zhong, S., Fei, Z., Chen, Y.R. et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening Nat. Biotechnol., 31 (2013),pp. 154-159
    [39]
    Zhuang, X., Wang, H., Lam, S.K. et al. Plant Cell, 25 (2013),pp. 4596-4615
    [40]
    Zhuang, X., Jiang, L. Autophagosome biogenesis in plants: roles of SH3P2 Autophagy, 10 (2014),pp. 704-705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return