5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 6
Jun.  2015
Turn off MathJax
Article Contents

A Genome-Wide CRISPR Library for High-Throughput Genetic Screening in Drosophila Cells

doi: 10.1016/j.jgg.2015.03.011
More Information
  • Corresponding author: E-mail address: andrew.bassett@path.ox.ac.uk (Andrew R. Bassett); E-mail address: jilong.liu@dpag.ox.ac.uk (Ji-Long Liu)
  • Received Date: 2015-03-25
  • Accepted Date: 2015-03-30
  • Rev Recd Date: 2015-03-28
  • Available Online: 2015-04-18
  • Publish Date: 2015-06-20
  • The simplicity of the CRISPR/Cas9 system of genome engineering has opened up the possibility of performing genome-wide targeted mutagenesis in cell lines, enabling screening for cellular phenotypes resulting from genetic aberrations. Drosophila cells have proven to be highly effective in identifying genes involved in cellular processes through similar screens using partial knockdown by RNAi. This is in part due to the lower degree of redundancy between genes in this organism, whilst still maintaining highly conserved gene networks and orthologs of many human disease-causing genes. The ability of CRISPR to generate genetic loss of function mutations not only increases the magnitude of any effect over currently employed RNAi techniques, but allows analysis over longer periods of time which can be critical for certain phenotypes. In this study, we have designed and built a genome-wide CRISPR library covering 13,501 genes, among which 8989 genes are targeted by three or more independent single guide RNAs (sgRNAs). Moreover, we describe strategies to monitor the population of guide RNAs by high throughput sequencing (HTS). We hope that this library will provide an invaluable resource for the community to screen loss of function mutations for cellular phenotypes, and as a source of guide RNA designs for future studies.
  • loading
  • [1]
    Bakal, C. Brief. Funct. Genomics, 10 (2011),pp. 197-205
    [2]
    Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
    [3]
    Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
    [4]
    Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Biol. Open, 3 (2014),pp. 42-49
    [5]
    Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [6]
    Boutros, M., Ahringer, J. The art and design of genetic screens: RNA interference Nat. Rev. Genet., 9 (2008),pp. 554-566
    [7]
    Boutros, M., Kiger, A.A., Armknecht, S. et al. Science, 303 (2004),pp. 832-835
    [8]
    Brouns, S.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
    [9]
    de Hoon, M.J., Imoto, S., Nolan, J. et al. Open source clustering software Bioinformatics, 20 (2004),pp. 1453-1454
    [10]
    Doench, J.G., Hartenian, E., Graham, D.B. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation Nat. Biotechnol., 32 (2014),pp. 1262-1267
    [11]
    Doudna, J.A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science, 346 (2014),p. 1258096
    [12]
    Frock, R.L., Hu, J., Meyers, R.M. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases Nat. Biotechnol., 33 (2015),pp. 179-186
    [13]
    Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-2586
    [14]
    Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
    [15]
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
    [16]
    Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [17]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [18]
    Huang da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
    [19]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [20]
    Koike-Yusa, H., Li, Y., Tan, E.P. et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library Nat. Biotechnol., 32 (2014),pp. 267-273
    [21]
    Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
    [22]
    Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Genome Biol., 10 (2009),p. R25
    [23]
    Lee, D.F., Chen, C.C., Hsu, T.A. et al. J. Virol., 74 (2000),pp. 11873-11880
    [24]
    Lloyd, T.E., Taylor, J.P. Ann. N. Y. Acad. Sci., 1184 (2010),pp. e1-20
    [25]
    Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol., 15 (2014),p. 550
    [26]
    Ma, Y., Creanga, A., Lum, L. et al. Nature, 443 (2006),pp. 359-363
    [27]
    Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [28]
    Port, F., Chen, H.M., Lee, T. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E2967-2976
    [29]
    Reiter, L.T., Potocki, L., Chien, S. et al. Genome Res., 11 (2001),pp. 1114-1125
    [30]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [31]
    Rouet, P., Smih, F., Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 6064-6068
    [32]
    Saldanha, A.J. Java Treeview–extensible visualization of microarray data Bioinformatics, 20 (2004),pp. 3246-3248
    [33]
    Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly (Austin), 8 (2014),pp. 52-57
    [34]
    Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [35]
    Shrivastav, M., De Haro, L.P., Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice Cell Res., 18 (2008),pp. 134-147
    [36]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [37]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [38]
    Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
    [39]
    Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return