[1] |
Binder, V., Bartenhagen, C., Okpanyi, V. et al. A new workflow for whole-genome sequencing of single human cells Hum. Mutat., 35 (2014),pp. 1260-1270
|
[2] |
Cai, H.Q., Liu, H.T., Shi, B. et al. Whole genome amplification and its application in forensic individual identification Yi Chuan, 32 (2010),pp. 1119-1125
|
[3] |
Czyz, Z.T., Hoffmann, M., Schlimok, G. et al. Reliable single cell array CGH for clinical samples PLoS One, 9 (2014),p. e85907
|
[4] |
de Bourcy, C.F., De Vlaminck, I., Kanbar, J.N. et al. A quantitative comparison of single-cell whole genome amplification methods PLoS One, 9 (2014),p. e105585
|
[5] |
Dean, F.B., Hosono, S., Fang, L. et al. Comprehensive human genome amplification using multiple displacement amplification Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 5261-5266
|
[6] |
Findlay, I., Ray, P., Quirke, P. et al. Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis Hum. Reprod., 10 (1995),pp. 1609-1618
|
[7] |
Fiorentino, F., Biricik, A., Bono, S. et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos Fertil. Steril., 101 (2014),pp. 1375-1382
|
[8] |
Fiorentino, F., Spizzichino, L., Bono, S. et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization Hum. Reprod., 26 (2011),pp. 1925-1935
|
[9] |
Gill, P., Ghaemi, A. Nucleic acid isothermal amplification technologies: a review Nucleosides Nucleotides Nucleic Acids, 27 (2008),pp. 224-243
|
[10] |
Handyside, A.H. 24-chromosome copy number analysis: a comparison of available technologies Fertil. Steril., 100 (2013),pp. 595-602
|
[11] |
Hou, Y., Fan, W., Yan, L. et al. Genome analyses of single human oocytes Cell, 155 (2013),pp. 1492-1506
|
[12] |
Li, H., Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform Bioinformatics, 26 (2010),pp. 589-595
|
[13] |
Huang, J., Yan, L., Fan, W. et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos Fertil. Steril., 102 (2014),pp. 1685-1691
|
[14] |
Liang, D., Lv, W., Wang, H. et al. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing Prenat. Diagn., 33 (2013),pp. 409-415
|
[15] |
Liang, D., Peng, Y., Lv, W. et al. Copy number variation sequencing for comprehensive diagnosis of chromosome disease syndromes J. Mol. Diagn., 16 (2014),pp. 519-526
|
[16] |
Munne, S. Preimplantation genetic diagnosis for aneuploidy and translocations using array comparative genomic hybridization Curr. Genomics, 13 (2012),pp. 463-470
|
[17] |
Shen, J., Cram, D.S., Wu, W. et al. Reprod. Biomed. Online, 27 (2013),pp. 176-183
|
[18] |
Telenius, H., Carter, N.P., Bebb, C.E. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer Genomics, 13 (1992),pp. 718-725
|
[19] |
Tibshirani, R., Wang, P. Spatial smoothing and hot spot detection for CGH data using fused lasso Biostatistics, 9 (2008),pp. 18-29
|
[20] |
Treff, N.R., Su, J., Tao, X. et al. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses Mol. Hum. Reprod., 17 (2011),pp. 335-343
|
[21] |
Vanneste, E., Voet, T., Le Caignec, C. et al. Chromosome instability is common in human cleavage-stage embryos Nat. Med., 15 (2009),pp. 577-583
|
[22] |
Voet, T., Vanneste, E., Van der Aa, N. et al. Breakage-fusion-bridge cycles leading to inv dup del occur in human cleavage stage embryos Hum. Mutat., 32 (2011),pp. 783-793
|
[23] |
Wang, H., Wang, L., Ma, M. et al. A PGD pregnancy achieved by embryo copy number variation sequencing with confirmation by non-invasive prenatal diagnosis J. Genet. Genomics, 41 (2014),pp. 453-456
|
[24] |
Wang, L., Cram, D.S., Shen, J. et al. Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos Biol. Reprod., 91 (2014),p. 37
|
[25] |
Wang, L., Wang, X., Zhang, J. et al. Detection of chromosomal aneuploidy in human preimplantation embryos by next-generation sequencing Biol. Reprod., 90 (2014),p. 95
|
[26] |
Wang, Y., Chen, Y., Tian, F. et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing Clin. Chem., 60 (2014),pp. 251-259
|
[27] |
Wells, D., Kaur, K., Grifo, J. et al. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation J. Med. Genet., 51 (2014),pp. 553-562
|
[28] |
Yin, X., Tan, K., Vajta, G. et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts Biol. Reprod., 88 (2013),p. 69
|
[29] |
Yu, Z., Lu, S., Huang, Y. Microfluidic whole genome amplification device for single cell sequencing Anal. Chem., 86 (2014),pp. 9386-9390
|
[30] |
Zhang, L., Cui, X., Schmitt, K. et al. Whole genome amplification from a single cell: implications for genetic analysis Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 5847-5851
|
[31] |
Zheng, Y.M., Wang, N., Li, L. et al. Whole genome amplification in preimplantation genetic diagnosis J. Zhejiang Univ. Sci. B, 12 (2011),pp. 1-11
|
[32] |
Zong, C., Lu, S., Chapman, A.R. et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell Science, 338 (2012),pp. 1622-1626
|