5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 4
Apr.  2015
Turn off MathJax
Article Contents

A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila

doi: 10.1016/j.jgg.2015.02.007
More Information
  • Corresponding author: E-mail address: nijq@mail.tsinghua.edu.cn (Jian-Quan Ni)
  • Received Date: 2015-01-21
  • Accepted Date: 2015-02-26
  • Rev Recd Date: 2015-02-11
  • Available Online: 2015-03-12
  • Publish Date: 2015-04-20
  • The last couple of years have witnessed an explosion in development of CRISPR-based genome editing technologies in cell lines as well as in model organisms. In this review, we focus on the applications of this popular system in Drosophila. We discuss the effectiveness of the CRISPR/Cas9 systems in terms of delivery, mutagenesis detection, parameters affecting efficiency, and off-target issues, with an emphasis on how to apply this powerful tool to characterize gene functions.
  • loading
  • [1]
    Auer, T.O., Duroure, K., De Cian, A. et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair Genome Res., 24 (2014),pp. 142-153
    [2]
    Baena-Lopez, L.A., Alexandre, C., Mitchell, A. et al. Development, 140 (2013),pp. 4818-4825
    [3]
    Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
    [4]
    Barrangou, R., Marraffini, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity Mol. Cell, 54 (2014),pp. 234-244
    [5]
    Bassett, A.R., Liu, J.-L. J. Genet. Genomics, 41 (2014),pp. 7-19
    [6]
    Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
    [7]
    Beumer, K.J.K., Trautman, J.K.J., Mukherjee, K. et al. Donor DNA utilization during gene targeting with zinc-finger nucleases G3 (Bethesda), 3 (2013),pp. 657-664
    [8]
    Bolotin, A., Quinquis, B., Sorokin, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology, 151 (2005),pp. 2551-2561
    [9]
    Bondy-Denomy, J., Davidson, A.R. To acquire or resist: the complex biological effects of CRISPR-Cas systems Trends Microbiol., 22 (2014),pp. 218-225
    [10]
    Brand, A.H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes Development, 118 (1993),pp. 401-415
    [11]
    Brouns, S.J.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
    [12]
    Chen, B., Gilbert, L.A., Cimini, B.A. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system Cell, 155 (2013),pp. 1479-1491
    [13]
    Chen, H.-M., Huang, Y., Pfeiffer, B.D. et al. Genetics, 199 (2015),pp. 683-694
    [14]
    Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [15]
    Deveau, H., Garneau, J.E., Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions Annu. Rev. Microbiol., 64 (2010),pp. 475-493
    [16]
    Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
    [17]
    Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. Nat. Methods, 10 (2013),pp. 741-743
    [18]
    Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [19]
    Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
    [20]
    Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
    [21]
    Gokcezade, J., Sienski, G., Duchek, P. G3 (Bethesda), 4 (2014),pp. 2279-2282
    [22]
    Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
    [23]
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. Genetics, 196 (2014),pp. 961-971
    [24]
    Haft, D.H., Selengut, J., Mongodin, E.F. et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes PLoS Comput. Biol., 1 (2005),p. e60
    [25]
    Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [26]
    Hatoum-Aslan, A., Maniv, I., Marraffini, L.A. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 21218-21222
    [27]
    Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease Science, 329 (2010),pp. 1355-1358
    [28]
    Horvath, P., Romero, D.A., Coûté-Monvoisin, A.-C. et al. J. Bacteriol., 190 (2008),pp. 1401-1412
    [29]
    Hou, Z., Zhang, Y., Propson, N.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 15644-15649
    [30]
    Housden, B.E., Lin, S., Perrimon, N.
    [31]
    Hruscha, A., Krawitz, P., Rechenberg, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish Development, 140 (2013),pp. 4982-4987
    [32]
    Hsu, P.D., Lander, E.S., Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering Cell, 157 (2014),pp. 1262-1278
    [33]
    Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [34]
    Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [35]
    Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
    [36]
    Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
    [37]
    Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
    [38]
    Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [39]
    Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
    [40]
    Kim, H., Ishidate, T., Ghanta, K.S. et al. Genetics, 197 (2014),pp. 1069-1080
    [41]
    Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
    [42]
    Konermann, S., Brigham, M.D., Trevino, A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex Nature, 517 (2014),pp. 583-588
    [43]
    Kuscu, C., Arslan, S., Singh, R. et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease Nat. Biotechnol., 32 (2014),pp. 677-683
    [44]
    Li, M., Wang, R., Xiang, H. Nucleic Acids Res., 42 (2014),pp. 7226-7235
    [45]
    Lin, S.-C., Chang, Y.-Y., Chan, C.-C. Cell Biosci., 4 (2014),p. 63
    [46]
    Liu, D., Wang, Z., Xiao, A. et al. J. Genet. Genomics, 41 (2014),pp. 43-46
    [47]
    Maeder, M.L., Linder, S.J., Cascio, V.M. et al. CRISPR RNA-guided activation of endogenous human genes Nat. Methods, 10 (2013),pp. 977-979
    [48]
    Makarova, K.S., Aravind, L., Wolf, Y.I. et al. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems Biol. Direct, 6 (2011),p. 38
    [49]
    Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action Biol. Direct, 1 (2006),p. 7
    [50]
    Makarova, K.S., Haft, D.H., Barrangou, R. et al. Evolution and classification of the CRISPR-Cas systems Nat. Rev. Microbiol., 9 (2011),pp. 467-477
    [51]
    Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
    [52]
    Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [53]
    Marraffini, L.A., Sontheimer, E.J. Science, 322 (2008),pp. 1843-1845
    [54]
    Mohr, S.E., Smith, J.A., Shamu, C.E. et al. RNAi screening comes of age: improved techniques and complementary approaches Nat. Rev. Mol. Cell Biol., 15 (2014),pp. 591-600
    [55]
    Mojica, F.J., Díez-Villaseñor, C., Soria, E. et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria Mol. Microbiol., 36 (2000),pp. 244-246
    [56]
    Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J. et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements J. Mol. Evol., 60 (2005),pp. 174-182
    [57]
    Nam, K.H., Haitjema, C., Liu, X. et al. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system Structure, 20 (2012),pp. 1574-1584
    [58]
    Ni, J.-Q., Zhou, R., Czech, B. et al. Nat. Methods, 8 (2011),pp. 405-407
    [59]
    Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [60]
    Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
    [61]
    Port, F., Chen, H.-M., Lee, T. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. E2967-E2976
    [62]
    Pourcel, C., Salvignol, G., Vergnaud, G. Microbiology, 151 (2005),pp. 653-663
    [63]
    Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [64]
    Ren, X., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 19012-19017
    [65]
    Ren, X., Yang, Z., Mao, D. et al. G3 (Bethesda), 4 (2014),pp. 1955-1962
    [66]
    Ren, X., Yang, Z., Xu, J. et al. Cell Rep., 9 (2014),pp. 1151-1162
    [67]
    Rouillon, C., Zhou, M., Zhang, J. et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade Mol. Cell, 52 (2013),pp. 124-134
    [68]
    Sanjana, N.E., Shalem, O., Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening Nat. Methods, 11 (2014),pp. 783-784
    [69]
    Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly (Austin), 8 (2014),pp. 52-57
    [70]
    Shah, S.A., Erdmann, S., Mojica, F.J.M. et al. Protospacer recognition motifs: mixed identities and functional diversity RNA Biol., 10 (2013),pp. 891-899
    [71]
    Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [72]
    Stern, D.L. Nature, 396 (1998),pp. 463-466
    [73]
    Sung, Y.H., Kim, J.M., Kim, H.-T. et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases Genome Res., 24 (2014),pp. 125-131
    [74]
    Tang, T.-H., Bachellerie, J.-P., Rozhdestvensky, T. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 7536-7541
    [75]
    Tsai, S.Q., Zheng, Z., Nguyen, N.T. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nat. Biotechnol., 33 (2015),pp. 187-197
    [76]
    Turner, T.L. Fine-mapping natural alleles: quantitative complementation to the rescue Mol. Ecol., 23 (2014),pp. 2377-2382
    [77]
    van der Oost, J., Westra, E.R., Jackson, R.N. et al. Unravelling the structural and mechanistic basis of CRISPR-Cas systems Nat. Rev. Microbiol., 12 (2014),pp. 479-492
    [78]
    Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [79]
    Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [80]
    Wangler, M.F., Yamamoto, S., Bellen, H.J. Fruit flies in biomedical research Genetics, 199 (2015),pp. 639-653
    [81]
    Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
    [82]
    Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
    [83]
    Xue, Z., Ren, M., Wu, M. et al. G3 (Bethesda), 4 (2014),pp. 925-929
    [84]
    Xue, Z., Wu, M., Wen, K. et al. G3 (Bethesda), 4 (2014),pp. 2167-2173
    [85]
    Yang, H., Wang, H., Shivalila, C.S. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering Cell, 154 (2013),pp. 1370-1379
    [86]
    Yin, H., Xue, W., Chen, S. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype Nat. Biotechnol., 32 (2014),pp. 551-553
    [87]
    Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
    [88]
    Zhang, X., Koolhaas, W.H., Schnorrer, F. G3 (Bethesda), 4 (2014),pp. 2409-2418
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads (2) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return