[1] |
Abecasis, G.R., Cherny, S.S., Cookson, W.O. et al. GRR: graphical representation of relationship errors Bioinformatics, 17 (2001),pp. 742-743
|
[2] |
Allain, C.C., Poon, L.S., Chan, C.S. et al. Enzymatic determination of total serum cholesterol Clin. Chem., 20 (1974),pp. 470-475
|
[3] |
Almasy, L., Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees Am. J. Hum. Genet., 62 (1998),pp. 1198-1211
|
[4] |
Aulchenko, Y.S., Ripatti, S., Lindqvist, I. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts Nat. Genet., 41 (2009),pp. 47-55
|
[5] |
Barrett, J.C., Clayton, D.G., Concannon, P. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes Nat. Genet., 41 (2009),pp. 703-707
|
[6] |
Barton, A., Eyre, S., Ke, X. et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes Hum. Mol. Genet., 18 (2009),pp. 2518-2522
|
[7] |
Bosse, Y., Chagnon, Y.C., Despres, J.P. et al. Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Quebec Family Study J. Lipid Res., 45 (2004),pp. 419-426
|
[8] |
Danai, L.V., Guilherme, A., Guntur, K.V. et al. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling J. Lipid Res., 54 (2013),pp. 2697-2707
|
[9] |
Di Angelantonio, E., Sarwar, N., Perry, P. et al. Major lipids, apolipoproteins, and risk of vascular disease JAMA, 302 (2009),pp. 1993-2000
|
[10] |
Flicek, P., Amode, M.R., Barrell, D. et al. Ensembl 2014 Nucleic Acids Res., 42 (2014),pp. D749-D755
|
[11] |
Friedewald, W.T., Levy, R.I., Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin. Chem., 18 (1972),pp. 499-502
|
[12] |
Friedlander, Y., Austin, M.A., Newman, B. et al. Heritability of longitudinal changes in coronary-heart-disease risk factors in women twins Am. J. Hum. Genet., 60 (1997),pp. 1502-1512
|
[13] |
Group, G.C.R. GenSalt: rationale, design, methods and baseline characteristics of study participants J. Hum. Hypertens., 21 (2007),pp. 639-646
|
[14] |
Guy, J., Ogden, L., Wadwa, R.P. et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for Diabetes in Youth case-control study Diabetes Care, 32 (2009),pp. 416-420
|
[15] |
He, J., Gu, D., Wu, X. et al. Major causes of death among men and women in China N. Engl. J. Med., 353 (2005),pp. 1124-1134
|
[16] |
Hinds, D., Risch, N.
|
[17] |
Hokanson, J.E., Austin, M.A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies J. Cardiovasc. Risk, 3 (1996),pp. 213-219
|
[18] |
Huxley, R.R., Barzi, F., Lam, T.H. et al. Isolated low levels of high-density lipoprotein cholesterol are associated with an increased risk of coronary heart disease: an individual participant data meta-analysis of 23 studies in the Asia-Pacific region Circulation, 124 (2011),pp. 2056-2064
|
[19] |
Kathiresan, S., Melander, O., Guiducci, C. et al.
|
[20] |
Kathiresan, S., Willer, C.J., Peloso, G.M. et al. Common variants at 30 loci contribute to polygenic dyslipidemia Nat. Genet., 41 (2009),pp. 56-65
|
[21] |
Kim, Y.J., Go, M.J., Hu, C. et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits Nat. Genet., 43 (2011),pp. 990-995
|
[22] |
Kooner, J.S., Chambers, J.C., Aguilar-Salinas, C.A. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides Nat. Genet., 40 (2008),pp. 149-151
|
[23] |
LaRosa, J.C., He, J., Vupputuri, S.
|
[24] |
Li, C., Yang, X., He, J. et al. PLoS One, 9 (2014),p. e98432
|
[25] |
Liu, J., Rosner, M.H. Lipid abnormalities associated with end-stage renal disease Semin. Dial., 19 (2006),pp. 32-40
|
[26] |
Lozano, R., Naghavi, M., Foreman, K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 Lancet, 380 (2013),pp. 2095-2128
|
[27] |
Luo, B.F., Du, L., Li, J.X. et al. Heritability of metabolic syndrome traits among healthy younger adults: a population based study in China J. Med. Genet., 47 (2010),pp. 415-420
|
[28] |
Luukkonen, T.M., Pöyhönen, M., Palotie, A. et al. A balanced translocation truncates Neurotrimin in a family with intracranial and thoracic aortic aneurysm J. Med. Genet., 49 (2012),pp. 621-629
|
[29] |
Ma, L., Clark, A.G., Keinan, A. Gene-based testing of interactions in association studies of quantitative traits PLoS Genet., 9 (2013),p. e1003321
|
[30] |
Mailman, M.D., Feolo, M., Jin, Y. et al. The NCBI dbGaP database of genotypes and phenotypes Nat. Genet., 39 (2007),pp. 1181-1186
|
[31] |
Malhotra, A., Wolford, J.K. Analysis of quantitative lipid traits in the genetics of NIDDM (GENNID) study Diabetes, 54 (2005),pp. 3007-3014
|
[32] |
Moschovi, M., Trimis, G., Apostolakou, F. et al. Serum lipid alterations in acute lymphoblastic leukemia of childhood J. Pediatr. Hematol. Oncol., 26 (2004),pp. 289-293
|
[33] |
Murray, C.J.L., Vos, T., Lozano, R. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 Lancet, 380 (2013),pp. 2197-2223
|
[34] |
Nishida, N., Koike, A., Tajima, A. et al. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals BMC Genomics, 9 (2008),p. 431
|
[35] |
O'Connell, J.R., Weeks, D.E. PedCheck: a program for identification of genotype incompatibilities in linkage analysis Am. J. Hum. Genet., 63 (1998),pp. 259-266
|
[36] |
Plant, D., Flynn, E., Mbarek, H. et al. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers Ann. Rheum. Dis., 69 (2010),pp. 1548-1553
|
[37] |
Pratt, S.C., Daly, M.J., Kruglyak, L. Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components Am. J. Hum. Genet., 66 (2000),pp. 1153-1157
|
[38] |
Puri, V., Virbasius, J.V., Guilherme, A. et al. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27 Acta Physiol. (Oxf), 192 (2008),pp. 103-115
|
[39] |
Ramirez, C.M., Dávalos, A., Goedeke, L. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1 Arterioscler. Thromb. Vasc. Biol., 31 (2011),pp. 2707-2714
|
[40] |
Sandholm, N., Salem, R.M., McKnight, A.J. et al. New susceptibility loci associated with kidney disease in type 1 diabetes PLoS Genet., 8 (2012),p. e1002921
|
[41] |
Saxena, R., Voight, B.F., Lyssenko, V. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels Science, 316 (2007),pp. 1331-1336
|
[42] |
Sheng, X., Yang, J. Truncated product methods for panel unit root tests Oxf. Bull. Econ. Stat., 75 (2013),pp. 624-636
|
[43] |
Steiner, G., Urowitz, M.B. Lipid profiles in patients with rheumatoid arthritis: mechanisms and the impact of treatment Semin. Arthritis Rheum, 38 (2009),pp. 372-381
|
[44] |
Tan, A., Sun, J., Xia, N. et al. A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population Hum. Mol. Genet., 21 (2012),pp. 1658-1664
|
[45] |
Teslovich, T.M., Musunuru, K., Smith, A.V. et al. Biological, clinical and population relevance of 95 loci for blood lipids Nature, 466 (2010),pp. 707-713
|
[46] |
von Bergh, A.R., Beverloo, H.B., Rombout, P. et al. Genes Chromosomes Cancer, 35 (2002),pp. 92-96
|
[47] |
Wallace, C., Newhouse, S.J., Braund, P. et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia Am. J. Hum. Genet., 82 (2008),pp. 139-149
|
[48] |
Wallace, C., Rotival, M., Cooper, J.D. et al. Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes Hum. Mol. Genet., 21 (2012),pp. 2815-2824
|
[49] |
Waterworth, D.M., Ricketts, S.L., Song, K. et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease Arterioscler. Thromb. Vasc. Biol., 30 (2010),pp. 2264-2276
|
[50] |
Willer, C.J., Sanna, S., Jackson, A.U. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease Nat. Genet., 40 (2008),pp. 161-169
|
[51] |
Yang, J., Zhu, Y., Cole, S.A. et al. A gene-family analysis of 61 genetic variants in the nicotinic acetylcholine receptor genes for insulin resistance and type 2 diabetes in American Indians Diabetes, 61 (2012),pp. 1888-1894
|
[52] |
Yang, J., Zhu, Y., Lee, E.T. et al. Joint associations of 61 genetic variants in the nicotinic acetylcholine receptor genes with subclinical atherosclerosis in American Indians: a gene-family analysis Circ. Cardiovasc. Genet., 6 (2013),pp. 89-96
|
[53] |
Zhang, S., Liu, X., Necheles, J. et al. Genetic and environmental influences on serum lipid tracking: a population-based, longitudinal Chinese twin study Pediatr. Res., 68 (2010),pp. 316-322
|
[54] |
Zhu, Y., Yang, J., Yeh, F. et al. Joint association of nicotinic acetylcholine receptor variants with abdominal obesity in American Indians: the Strong Heart Family Study PLoS One, 9 (2014),p. e102220
|