5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 3
Mar.  2015
Turn off MathJax
Article Contents

Large Noncoding RNAs Are Promising Regulators in Embryonic Stem Cells

doi: 10.1016/j.jgg.2015.02.002
More Information
  • Corresponding author: E-mail address: yangming.wang@pku.edu.cn (Yangming Wang)
  • Received Date: 2014-12-08
  • Accepted Date: 2015-02-05
  • Rev Recd Date: 2015-02-04
  • Available Online: 2015-02-12
  • Publish Date: 2015-03-20
  • Embryonic stem cells (ESCs) hold great promises for treating and studying numerous devastating diseases. The molecular basis of their potential is not completely understood. Large noncoding RNAs (lncRNAs) are an important class of gene regulators that play essential roles in a variety of physiologic and pathologic processes. Dozens of lncRNAs are now identified to control ESC self-renewal and differentiation. Research on lncRNAs may provide novel insights into manipulating the cell fate or reprogramming somatic cells into induced pluripotent stem cells (iPSCs). In this review, we summarize the recent research efforts in identifying functional lncRNAs and understanding how they act in ESCs, and discuss various future directions of this field.
  • loading
  • [1]
    Bao, X., Wu, H., Zhu, X. et al. Cell Res., 25 (2015),pp. 80-92
    [2]
    Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [3]
    Bosson, A.D., Zamudio, J.R., Sharp, P.A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition Mol. Cell, 56 (2014),pp. 347-359
    [4]
    Brown, J.A., Bulkley, D., Wang, J. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix Nat. Struct. Mol. Biol., 21 (2014),pp. 633-640
    [5]
    Carninci, P., Kasukawa, T., Katayama, S. et al. The transcriptional landscape of the mammalian genome Science, 309 (2005),pp. 1559-1563
    [6]
    Cao, Y., Guo, W.T., Tian, S. et al. MiR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency EMBO J. (2015)
    [7]
    Carrieri, C., Cimatti, L., Biagioli, M. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat Nature, 491 (2012),pp. 454-457
    [8]
    Chu, C., Quinn, J., Chang, H.Y. Chromatin isolation by RNA purification (ChIRP) J. Vis. Exp., 61 (2012),p. 3912
    [9]
    Clamp, M., Fry, B., Kamal, M. et al. Distinguishing protein-coding and noncoding genes in the human genome Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 19428-19433
    [10]
    Denzler, R., Agarwal, V., Stefano, J. et al. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance Mol. Cell, 54 (2014),pp. 766-776
    [11]
    Derrien, T., Johnson, R., Bussotti, G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression Genome Res., 22 (2012),pp. 1775-1789
    [12]
    Dinger, M.E., Amaral, P.P., Mercer, T.R. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation Genome Res., 18 (2008),pp. 1433-1445
    [13]
    Djebali, S., Davis, C.A., Merkel, A. et al. Landscape of transcription in human cells Nature, 489 (2012),pp. 101-108
    [14]
    ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [15]
    Engreitz, J.M., Pandya-Jones, A., McDonel, P. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome Science, 341 (2013),p. 1237973
    [16]
    Engreitz, J.M., Sirokman, K., McDonel, P. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites Cell, 159 (2014),pp. 188-199
    [17]
    Folmes, C.D., Nelson, T.J., Martinez-Fernandez, A. et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming Cell Metab., 14 (2011),pp. 264-271
    [18]
    Guo, J.U., Agarwal, V., Guo, H. et al. Expanded identification and characterization of mammalian circular RNAs Genome Biol., 15 (2014),p. 409
    [19]
    Guo, W.T., Wang, X.W., Wang, Y. Micro-management of pluripotent stem cells Protein Cell, 5 (2014),pp. 36-47
    [20]
    Guttman, M., Donaghey, J., Carey, B.W. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation Nature, 477 (2011),pp. 295-300
    [21]
    Guttman, M., Russell, P., Ingolia, N.T. et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins Cell, 154 (2013),pp. 240-251
    [22]
    Han, H., Irimia, M., Ross, P.J. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming Nature, 498 (2013),pp. 241-245
    [23]
    Hansen, T.B., Jensen, T.I., Clausen, B.H. et al. Natural RNA circles function as efficient microRNA sponges Nature, 495 (2013),pp. 384-388
    [24]
    Hasegawa, Y., Brockdorff, N., Kawano, S. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA Dev. Cell, 19 (2010),pp. 469-476
    [25]
    Hassani, S.N., Totonchi, M., Gourabi, H. et al. Signaling roadmap modulating naive and primed pluripotency Stem Cells Dev., 23 (2014),pp. 193-208
    [26]
    Hillier, L.W., Coulson, A., Murray, J.I. et al. Genome Res., 15 (2005),pp. 1651-1660
    [27]
    Ingolia, N.T., Brar, G.A., Stern-Ginossar, N. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes Cell Rep., 8 (2014),pp. 1365-1379
    [28]
    Jeon, Y., Lee, J.T. Cell, 146 (2011),pp. 119-133
    [29]
    Kim, V.N., Han, J., Siomi, M.C. Biogenesis of small RNAs in animals Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 126-139
    [30]
    Klattenhoff, C.A., Scheuermann, J.C., Surface, L.E. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment Cell, 152 (2013),pp. 570-583
    [31]
    Kondoh, H., Lleonart, M.E., Nakashima, Y. et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells Antioxid. Redox. Signal., 9 (2007),pp. 293-299
    [32]
    Kong, L., Zhang, Y., Ye, Z.Q. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine Nucleic Acids Res., 35 (2007),pp. W345-W349
    [33]
    Kretz, M., Siprashvili, Z., Chu, C. et al. Nature, 493 (2013),pp. 231-235
    [34]
    Kutter, C., Watt, S., Stefflova, K. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression PLoS Genet., 8 (2012),p. e1002841
    [35]
    Lackford, B., Yao, C., Charles, G.M. et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal EMBO J., 33 (2014),pp. 878-889
    [36]
    Lin, M.F., Jungreis, I., Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions Bioinformatics, 27 (2011),pp. 275-282
    [37]
    Lin, N., Chang, K.,Y. et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment Mol. Cell, 53 (2014),pp. 1005-1019
    [38]
    Loewer, S., Cabili, M.N., Guttman, M. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells Nat. Genet., 42 (2010),pp. 1113-1117
    [39]
    Memczak, S., Jens, M., Elefsinioti, A. et al. Circular RNAs are a large class of animal RNAs with regulatory potency Nature, 495 (2013),pp. 333-338
    [40]
    Ng, H.H., Surani, M.A. The transcriptional and signalling networks of pluripotency Nat. Cell Biol., 13 (2011),pp. 490-496
    [41]
    Nichols, J., Smith, A. Pluripotency in the embryo and in culture Cold Spring Harb Perspect Biol., 4 (2012),p. a008218
    [42]
    Okazaki, Y., Furuno, M., Kasukawa, T. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
    [43]
    Pauli, A., Valen, E., Lin, M.F. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis Genome Res., 22 (2012),pp. 577-591
    [44]
    Rinn, J.L., Kertesz, M., Wang, J.K. et al. Cell, 129 (2007),pp. 1311-1323
    [45]
    Rinn, J.L., Chang, H.Y. Genome regulation by long noncoding RNAs Annu. Rev. Biochem., 81 (2012),pp. 145-166
    [46]
    Sauvageau, M., Goff, L.A., Lodato, S. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development eLife, 2 (2013),p. e01749
    [47]
    Schmitz, K.M., Mayer, C., Postepska, A. et al. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes Genes Dev., 24 (2010),pp. 2264-2269
    [48]
    Schratt, G., Weinhold, B., Lundberg, A.S. et al. Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells Mol. Cell Biol., 21 (2001),pp. 2933-2943
    [49]
    Taft, R.J., Pheasant, M., Mattick, J.S. The relationship between non-protein-coding DNA and eukaryotic complexity Bioessays, 29 (2007),pp. 288-299
    [50]
    Tay, Y., Rinn, J., Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition Nature, 505 (2014),pp. 344-352
    [51]
    Tee, W.W., Reinberg, D. Chromatin features and the epigenetic regulation of pluripotency states in ESCs Development, 141 (2014),pp. 2376-2390
    [52]
    Tiscornia, G., Izpisúa Belmonte, J.C. MicroRNAs in embryonic stem cell function and fate Genes Dev., 24 (2010),pp. 2732-2741
    [53]
    Tsai, M.C., Manor, O., Wan, Y. et al. Long noncoding RNA as modular scaffold of histone modification complexes Science, 329 (2010),pp. 689-693
    [54]
    Ulitsky, I., Shkumatava, A., Jan, C.H. et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution Cell, 147 (2011),pp. 1537-1550
    [55]
    Wang, K.C., Yang, Y.W., Liu, B. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Nature, 472 (2011),pp. 120-124
    [56]
    Wang, K.C., Chang, H.Y. Molecular mechanisms of long noncoding RNAs Mol. Cell, 43 (2011),pp. 904-914
    [57]
    Wang, L., Miao, Y.L., Zheng, X. et al. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming Cell Stem Cell, 13 (2013),pp. 676-690
    [58]
    Wang, P., Xue, Y., Han, Y. et al. Science, 344 (2014),pp. 310-313
    [59]
    Wang, Y., Xu, Z., Jiang, J. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal Dev. Cell, 25 (2013),pp. 69-80
    [60]
    Wang, Y., Blelloch, R. Cell cycle regulation by microRNAs in stem cells Results Probl. Cell Differ., 53 (2011),pp. 459-472
    [61]
    Wapinski, O., Chang, H.Y. Long noncoding RNAs and human disease Trends Cell Biol., 21 (2011),pp. 354-361
    [62]
    Wilusz, J.E., JnBaptiste, C.K., Lu, L.Y. et al. Genes Dev., 26 (2012),pp. 2392-2407
    [63]
    Xu, N., Papagiannakopoulos, T., Pan, G. et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells Cell, 137 (2009),pp. 647-658
    [64]
    Yin, Q.F., Yang, L., Zhang, Y. et al. Long noncoding RNAs with snoRNA ends Mol. Cell, 48 (2012),pp. 219-230
    [65]
    Zheng, G.X., Do, B.T., Webster, D.E. et al. Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs Nat. Struct. Mol. Biol., 21 (2014),pp. 585-590
    [66]
    Zhou, W., Choi, M., Margineantu, D. et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition EMBO J., 31 (2012),pp. 2103-2116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return