5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 3
Mar.  2015
Turn off MathJax
Article Contents

Genetic Study of Complex Diseases in the Post-GWAS Era

doi: 10.1016/j.jgg.2015.02.001
More Information
  • Corresponding author: E-mail address: huangqy@mail.ccnu.edu.cn (Qingyang Huang)
  • Received Date: 2014-10-16
  • Accepted Date: 2015-02-03
  • Rev Recd Date: 2015-02-01
  • Available Online: 2015-02-13
  • Publish Date: 2015-03-20
  • Genome-wide association studies (GWASs) have identified thousands of genes and genetic variants (mainly SNPs) that contribute to complex diseases in humans. Functional characterization and mechanistic elucidation of these SNPs and genes action are the next major challenge. It has been well established that SNPs altering the amino acids of protein-coding genes can drastically impact protein function, and play an important role in molecular pathogenesis. Functions of regulatory SNPs can be complex and elusive, and involve gene expression regulation through the effect on RNA splicing, transcription factor binding, DNA methylation and miRNA recruitment. In the present review, we summarize the recent progress in our understanding of functional consequences of GWAS-associated non-coding regulatory SNPs, and discuss the application of systems genetics and network biology in the interpretation of GWAS findings.
  • loading
  • [1]
    Ahmadiyeh, N., Pomerantz, M.M., Grisanzio, C. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 9742-9746
    [2]
    Aran, D., Sabato, S., Hellman, A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes Genome Biol., 14 (2013),p. R21
    [3]
    Bauer, D.E., Kamran, S.C., Lessard, S. et al. Science, 342 (2013),pp. 253-257
    [4]
    Bell, C.G., Finer, S., Lindgren, C.M. et al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus PLoS One, 5 (2010),p. e14040
    [5]
    Bergholdt, R., Brorsson, C., Palleja, A. et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein–protein interactions, and human pancreatic islet gene expression Diabetes, 61 (2012),pp. 954-962
    [6]
    Bojesen, S.E., Pooley, K.A., Johnatty, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer Nat. Genet., 45 (2013),pp. 371-384
    [7]
    Bruno, A.E., Li, L., Kalabus, J.L. et al. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′ UTRs of human genes BMC Genomics, 13 (2012),p. 44
    [8]
    Burkhardt, R., Kenny, E.E., Lowe, J.K. et al. Common SNPs in HMGCR in Micronesians and Caucasians associated with LDL-Cholesterol levels affect alternative splicing of exon13 Arterioscler. Thromb. Vasc. Biol., 28 (2008),pp. 2078-2084
    [9]
    Caussy, C., Charrière, S., Marçais, C. et al. Am. J. Hum. Genet., 94 (2014),pp. 129-134
    [10]
    Civelek, M., Lusis, A.J. Systems genetics approaches to understand complex traits Nat. Rev. Genet., 15 (2014),pp. 34-48
    [11]
    Claussnitzer, M., Dankel, S.N., Klocke, B. et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms Cell, 156 (2014),pp. 343-358
    [12]
    Cowper-Sal lari, R., Zhang, X., Wright, J.B. et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression Nat. Genet., 44 (2012),pp. 1191-1198
    [13]
    Dayeh, T.A., Olsson, A.H., Volkov, P. et al. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets Diabetologia, 56 (2013),pp. 1036-1046
    [14]
    De Gobbi, M., Viprakasit, V., Hughes, J.R. et al. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter Science, 312 (2006),pp. 1215-1217
    [15]
    Deveci, M., Catalyürek, U.V., Toland, A.E. mrSNP: software to detect SNP effects on microRNA binding BMC Bioinformatics, 15 (2014),p. 73
    [16]
    Edwards, S.L., Beesley, J., French, J.D. et al. Beyond GWASs: illuminating the dark road from association to function Am. J. Hum. Genet., 93 (2013),pp. 779-797
    [17]
    ENCODE Project Consortium, Bernstein, B.E., Birney, E., Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [18]
    Farber, C.R., Bennett, B.J., Orozco, L. et al. PLoS Genet., 7 (2011),p. e1002038
    [19]
    Fogarty, M.P., Cannon, M.E., Vadlamudi, S. et al. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus PLoS Genet., 10 (2014),p. e1004633
    [20]
    French, J.D., Ghoussaini, M., Edwards, S.L. et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers Am. J. Hum. Genet., 92 (2013),pp. 489-503
    [21]
    Furlong, L.I. Human diseases through the lens of network biology Trends Genet., 29 (2013),pp. 150-159
    [22]
    Ghoussaini, M., Edwards, S.L., Michailidou, K. et al. Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation Nat. Commun., 23 (2014),p. 4999
    [23]
    Gong, J., Tong, Y., Zhang, H.M. et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis Hum. Mutat., 33 (2012),pp. 254-263
    [24]
    Gregory, A.P., Dendrou, C.A., Attfield, K.E. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis Nature, 488 (2012),pp. 508-511
    [25]
    Harismendy, O., Notani, D., Song, X. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response Nature, 470 (2011),pp. 264-268
    [26]
    Hausser, J., Zavolan, M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression Nat. Rev. Genet., 15 (2014),pp. 599-612
    [27]
    Hindorff, L.A., Sethupathy, P., Junkins, H.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9362-9367
    [28]
    Hitchins, M.P., Rapkins, R.W., Kwok, C.T. et al. Cancer Cell, 20 (2011),pp. 200-213
    [29]
    Huan, T., Zhang, B., Wang, Z. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease Arterioscler. Thromb. Vasc. Biol., 33 (2013),pp. 1427-1434
    [30]
    Huang, Q., Whitington, T., Gao, P. et al. Nat. Genet., 46 (2014),pp. 126-135
    [31]
    Hutchinson, J.N., Raj, T., Fagerness, J. et al. Allele-specific methylation occurs at genetic variants associated with complex disease PLoS One, 9 (2014),p. e98464
    [32]
    Ishii, N., Ozaki, K., Sato, H. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction J. Hum. Genet., 51 (2006),pp. 1087-1099
    [33]
    Jendrzejewski, J., He, H., Radomska, H.S. et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 8646-8651
    [34]
    Jia, L., Landan, G., Pomerantz, M. et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus PLoS Genet., 5 (2009),p. e1000597
    [35]
    Kapeller, J., Houghton, L.A., Mönnikes, H. et al. Evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome Hum. Mol. Genet., 17 (2008),pp. 2967-2977
    [36]
    Kulkarni, S., Savan, R., Qi, Y. et al. Differential microRNA regulation of HLA-C expression and its association with HIV control Nature, 472 (2011),pp. 495-498
    [37]
    Kulzer, J.R., Stitzel, M.L., Morken, M.A. et al. Am. J. Hum. Genet., 94 (2014),pp. 186-197
    [38]
    Kumar, V., Westra, H.J., Karjalainen, J. et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression PLoS Genet., 9 (2013),p. e1003201
    [39]
    Liu, C., Zhang, F., Li, T. et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs BMC Genomics, 13 (2012),p. 661
    [40]
    López-Bigas, N., Audit, B., Ouzounis, C. et al. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett., 579 (2005),pp. 1900-1903
    [41]
    Macintyre, G., Bailey, J., Haviv, I. et al. is-rSNP: a novel technique for in silico regulatory SNP detection Bioinformatics, 26 (2010),pp. i524-530
    [42]
    Mäkinen, V.P., Civelek, M., Meng, Q. et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease PLoS Genet., 10 (2014),p. e1004502
    [43]
    Malik, M., Simpson, J.F., Parikh, I. et al. CD33 Alzheimer's risk-altering polymorphism, CD33 expression, and exon 2 splicing J. Neurosci., 33 (2013),pp. 13320-13325
    [44]
    Matys, V., Fricke, E., Geffers, R. et al. TRANSFAC: transcriptional regulation, from patterns to profiles Nucleic Acids Res., 31 (2003),pp. 374-378
    [45]
    Maurano, M.T., Humbert, R., Rynes, E. et al. Systematic localization of common disease-associated variation in regulatory DNA Science, 337 (2012),pp. 1190-1195
    [46]
    Meyer, K.B., O'Reilly, M., Michailidou, K. et al. Am. J. Hum. Genet., 93 (2013),pp. 1046-1060
    [47]
    Meyer, K.B., Maia, A.T., O'Reilly, M. et al. PLoS Biol., 6 (2008),p. e108
    [48]
    Miller, C.L., Haas, U., Diaz, R. et al. PLoS Genet., 10 (2014),p. e1004263
    [49]
    Musunuru, K., Strong, A., Frank-Kamenetsky, M. et al. Nature, 466 (2010),pp. 714-719
    [50]
    Nakata, K., Lipska, B.K., Hyde, T.M. et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 15873-15878
    [51]
    Nguyen, H.H., Takata, R., Akamatsu, S. et al. Hum. Mol. Genet., 21 (2012),pp. 2076-2085
    [52]
    Nicolae, D.L., Gamazon, E., Zhang, W. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS PLoS Genet., 6 (2010),p. e1000888
    [53]
    Nicoloso, M.S., Sun, H., Spizzo, R. et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility Cancer Res., 70 (2010),pp. 2789-2798
    [54]
    Ning, S., Zhao, Z., Ye, J. et al. LincSNP: a database of linking disease-associated SNPs to human large intergenic non-coding RNAs BMC Bioinformatics, 15 (2014),p. 152
    [55]
    Paraboschi, E.M., Rimoldi, V., Soldà, G. et al. Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis Hum. Mol. Genet., 20 (2014),pp. 6746-6761
    [56]
    Pasmant, E., Sabbagh, A., Vidaud, M. et al. FASEB J., 25 (2011),pp. 444-448
    [57]
    Pittman, A.M., Naranjo, S., Jalava, S.E. et al. PLoS Genet., 6 (2010),p. e1001126
    [58]
    Pomerantz, M.M., Ahmadiyeh, N., Jia, L. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer Nat. Genet., 41 (2009),pp. 882-884
    [59]
    Praetorius, C., Grill, C., Stacey, S.N. et al. Cell, 155 (2013),pp. 1022-1033
    [60]
    Rademakers, R., Eriksen, J.L., Baker, M. et al. Hum. Mol. Genet., 17 (2008),pp. 3631-3642
    [61]
    Raval, A., Tanner, S.M., Byrd, J.C. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia Cell, 129 (2007),pp. 879-890
    [62]
    Reynard, L.N., Bui, C., Canty-Laird, E.G. et al. Hum. Mol. Genet., 20 (2011),pp. 3450-3460
    [63]
    Reynard, L.N., Bui, C., Syddall, C.M. et al. Hum. Genet., 133 (2014),pp. 1059-1073
    [64]
    Richardson, K., Louie-Gao, Q., Arnett, D.K. et al. PLoS One, 6 (2011),p. e17944
    [65]
    Richardson, K., Nettleton, J.A., Rotllan, N. et al. Gain-of-function lipoprotein lipase variant rs13702 modulates lipid traits through disruption of a microRNA-410 seed site Am. J. Hum. Genet., 92 (2013),pp. 5-14
    [66]
    Robertson, K.D. DNA methylation and human disease Nat. Rev. Genet., 6 (2005),pp. 597-610
    [67]
    Sandelin, A., Alkema, W., Engstrom, P. et al. JASPAR: an open-access database for eukaryotic transcription factor binding profiles Nucleic Acids Res., 32 (2004),pp. D91-D94
    [68]
    Schödel, J., Bardella, C., Sciesielski, L.K. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression Nat. Genet., 44 (2012),pp. 420-425
    [69]
    Seo, S., Takayama, K., Uno, K. et al. Functional analysis of deep intronic SNP rs13438494 in intron 24 of PCLO gene PLoS One, 8 (2013),p. e76960
    [70]
    Shen, H., Fridley, B.L., Song, H. et al. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer Nat. Commun., 4 (2013),p. 1628
    [71]
    Small, K.S., Hedman, A.K., Grundberg, E. et al. Nat. Genet., 43 (2011),pp. 561-564
    [72]
    Smemo, S., Tena, J.J., Kim, K.H. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3 Nature, 507 (2014),pp. 371-375
    [73]
    Sotelo, J., Esposito, D., Duhagon, M.A. et al. Long-range enhancers on 8q24 regulate c-Myc Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 3001-3005
    [74]
    Syddall, C.M., Reynard, L.N., Young, D.A. et al. PLoS Genet., 9 (2013),p. e1003557
    [75]
    Szymanski, M., Wang, R., Bassett, S.S. et al. Alzheimer's risk variants in the clusterin gene are associated with alternative splicing Transl. Psychiatry, 1 (2011),p. e18
    [76]
    Quigley, D., Balmain, A. Systems genetics analysis of cancer susceptibility: from mouse models to humans Nat. Rev. Genet., 10 (2009),pp. 651-657
    [77]
    The CARDIoGRAMplusC4D Consortium Large-scale association analysis identifies new risk loci for coronary artery disease Nat. Genet., 45 (2013),pp. 25-33
    [78]
    Thomas-Chollier, M., Hufton, A., Heinig, M. et al. Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs Nat. Protoc., 6 (2011),pp. 1860-1869
    [79]
    Thomson, D.W., Bracken, C.P., Goodall, G.J. Experimental strategies for microRNA target identification Nucleic Acids Res., 39 (2011),pp. 6845-6853
    [80]
    Tuupanen, S., Turunen, M., Lehtonen, R. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling Nat. Genet., 41 (2009),pp. 885-890
    [81]
    Verlaan, D.J., Berlivet, S., Hunninghake, G.M. et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease Am. J. Hum. Genet., 85 (2009),pp. 377-393
    [82]
    Visser, M., Kayser, M., Palstra, R.J. Genome Res., 22 (2012),pp. 446-455
    [83]
    Voight, B.F., Scott, L.J., Steinthorsdottir, V. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis Nat. Genet., 42 (2010),pp. 579-589
    [84]
    Wasserman, N.F., Aneas, I., Nobrega, M.A. Genome Res., 20 (2010),pp. 1191-1197
    [85]
    Welter, D., MacArthur, J., Morales, J. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations Nucleic Acids Res., 42 (2014),pp. D1001-D1006
    [86]
    Wright, J.B., Brown, S.J., Cole, M.D. Mol. Cell Biol., 30 (2010),pp. 1411-1420
    [87]
    Xu, Z., Taylor, J.A. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies Nucleic Acids Res., 37 (2009),pp. W600-W605
    [88]
    Yu, C.Y., Theusch, E., Lo, K. et al. Hum. Mol. Genet., 23 (2014),pp. 319-332
    [89]
    Zhang, B., Gaiteri, C., Bodea, L.G. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease Cell, 153 (2013),pp. 707-720
    [90]
    Zhang, X., Cowper-Sal lari, R., Bailey, S.D. et al. Genome Res., 22 (2012),pp. 1437-1446
    [91]
    Zhou, B., Wei, F.Y., Kanai, N. et al. Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human Hum. Mol. Genet., 23 (2014),pp. 4639-4650
    [92]
    Zhou, X., Baron, R.M., Hardin, M. et al. Hum. Mol. Genet., 21 (2012),pp. 1325-1335
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (75) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return