[1] |
Barbosa-Sabanero, K., Hoffmann, A., Judge, C. et al. Lens and retina regeneration: new perspectives from model organisms Biochem. J., 447 (2012),pp. 321-334
|
[2] |
Bely, A.E. Evolutionary loss of animal regeneration: pattern and process Integr. Comp. Biol., 50 (2010),pp. 515-527
|
[3] |
Bely, A.E., Nyberg, K.G. Evolution of animal regeneration: re-emergence of a field Trends Ecol. Evol., 25 (2010),pp. 161-170
|
[4] |
Bergmann, O., Bhardwaj, R.D., Bernard, S. et al. Evidence for cardiomyocyte renewal in humans Science, 324 (2009),pp. 98-102
|
[5] |
Blum, N., Begemann, G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration Development, 139 (2012),pp. 107-116
|
[6] |
Bode, H.R. Continuous conversion of neuron phenotype in hydra Trends Genet., 8 (1992),pp. 279-284
|
[7] |
Bode, H.R. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution J. Cell Sci., 109 (1996),pp. 1155-1164
|
[8] |
Bonner-Weir, S., Sharma, A. Pancreatic stem cells J. Pathol., 197 (2002),pp. 519-526
|
[9] |
Brennand, K., Huangfu, D., Melton, D. All beta cells contribute equally to islet growth and maintenance PLoS Biol., 5 (2007),p. e163
|
[10] |
Bridge, D., Cunningham, C.W., DeSalle, R. et al. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence Mol. Biol. Evol., 12 (1995),pp. 679-689
|
[11] |
Brockes, J.P., Kumar, A. Comparative aspects of animal regeneration Annu. Rev. Cell. Dev. Biol., 24 (2008),pp. 525-549
|
[12] |
Butler, A.E., Janson, J., Bonner-Weir, S. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes Diabetes, 52 (2003),pp. 102-110
|
[13] |
Carlson, B.M. Some principles of regeneration in mammalian systems Anat. Rec. B New Anat., 287 (2005),pp. 4-13
|
[14] |
Chablais, F., Jazwinska, A. IGF signaling between blastema and wound epidermis is required for fin regeneration Development, 137 (2010),pp. 871-879
|
[15] |
Chera, S., Ghila, L., Dobretz, K. et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration Dev. Cell, 17 (2009),pp. 279-289
|
[16] |
Choi, W.Y., Gemberling, M., Wang, J. et al. Development, 140 (2013),pp. 660-666
|
[17] |
Cummings, S.G., Bode, H.R. Rouxs Arch. Dev. Biol., 194 (1984),pp. 79-86
|
[18] |
David, C.N., Murphy, S. Characterization of interstitial stem cells in hydra by cloning Dev. Biol., 58 (1977),pp. 372-383
|
[19] |
Dor, Y., Brown, J., Martinez, O.I. et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation Nature, 429 (2004),pp. 41-46
|
[20] |
Echeverri, K., Clarke, J.D., Tanaka, E.M. Dev. Biol., 236 (2001),pp. 151-164
|
[21] |
Egger, B. Regeneration: rewarding, but potentially risky Birth Defects Res. C Embryo Today Rev., 84 (2008),pp. 257-264
|
[22] |
Eguchi, G. Cellular and molecular background of wolffian lens regeneration Cell Differ. Dev., 25 (1988),pp. 147-158
|
[23] |
Eisenhoffer, G.T., Kang, H., Sanchez Alvarado, A. Cell Stem Cell, 3 (2008),pp. 327-339
|
[24] |
Ellison, G.M., Vicinanza, C., Smith, A.J. et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair Cell, 154 (2013),pp. 827-842
|
[25] |
Eming, S.A., Hammerschmidt, M., Krieg, T. et al. Interrelation of immunity and tissue repair or regeneration Semin. Cell Dev. Biol., 20 (2009),pp. 517-527
|
[26] |
Endo, Y., Zhang, M., Yamaji, S. et al. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells PLoS One, 7 (2012),p. e31846
|
[27] |
Eulalio, A., Mano, M., Dal Ferro, M. et al. Functional screening identifies miRNAs inducing cardiac regeneration Nature, 492 (2012),pp. 376-381
|
[28] |
Fang, Y., Gupta, V., Karra, R. et al. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13416-13421
|
[29] |
Gargioli, C., Slack, J.M. Development, 131 (2004),pp. 2669-2679
|
[30] |
Gauron, C., Rampon, C., Bouzaffour, M. et al. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed Sci. Rep., 3 (2013),p. 2084
|
[31] |
Gierer, A., Berking, S., Bode, H. et al. Regeneration of hydra from reaggregated cells Nat. New Biol., 239 (1972),pp. 98-101
|
[32] |
Glazer, A.M., Wilkinson, A.W., Backer, C.B. et al. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis Dev. Biol., 337 (2010),pp. 148-156
|
[33] |
Gonzalez-Rosa, J.M., Martin, V., Peralta, M. et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish Development, 138 (2011),pp. 1663-1674
|
[34] |
Gurtner, G.C., Werner, S., Barrandon, Y. et al. Wound repair and regeneration Nature, 453 (2008),pp. 314-321
|
[35] |
Gwon, A.E., Gruber, L.J., Mundwiler, K.E. A histologic study of lens regeneration in aphakic rabbits Invest. Ophthalmol. Vis. Sci., 31 (1990),pp. 540-547
|
[36] |
Hayashi, T., Mizuno, N., Takada, R. et al. Determinative role of Wnt signals in dorsal iris derived lens regeneration in newt eye Mech. Dev., 123 (2006),pp. 793-800
|
[37] |
Hayashi, T., Mizuno, N., Kondoh, H. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye Dev. Growth Differ., 50 (2008),pp. 279-287
|
[38] |
Hayashi, T., Shibata, N., Okumura, R. et al. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research Dev. Growth Differ., 52 (2010),pp. 131-144
|
[39] |
Henry, J.J., Elkins, M.B. Dev. Genes Evol., 211 (2001),pp. 377-387
|
[40] |
Hwang, J.S., Kobayashi, C., Agata, K. et al. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay Gene, 333 (2004),pp. 15-25
|
[41] |
Inada, A., Nienaber, C., Katsuta, H. et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19915-19919
|
[42] |
Jayawardena, T.M., Egemnazarov, B., Finch, E.A. et al. Circ. Res., 110 (2012),pp. 1465-1473
|
[43] |
Jazwinska, A., Badakov, R., Keating, M.T. Activin-betaA signaling is required for zebrafish fin regeneration Curr. Biol., 17 (2007),pp. 1390-1395
|
[44] |
Jopling, C., Sleep, E., Raya, M. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation Nature, 464 (2010),pp. 606-609
|
[45] |
Jovanovic, L., Knopp, R.H., Brown, Z. et al. Declining insulin requirement in the late first trimester of diabetic pregnancy Diabetes Care, 24 (2001),pp. 1130-1136
|
[46] |
Kajstura, J., Urbanek, K., Perl, S. et al. Cardiomyogenesis in the adult human heart Circ. Res., 107 (2010),pp. 305-315
|
[47] |
Kang, J., Nachtrab, G., Poss, K.D. Local Dkk1 crosstalk from breeding ornaments impedes regeneration of injured male zebrafish fins Dev. Cell, 27 (2013),pp. 19-31
|
[48] |
Kawakami, Y., Rodriguez Esteban, C., Raya, M. et al. Wnt/beta-catenin signaling regulates vertebrate limb regeneration Genes Dev., 20 (2006),pp. 3232-3237
|
[49] |
Kikuchi, K., Holdway, J.E., Major, R.J. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration Dev. Cell, 20 (2011),pp. 397-404
|
[50] |
Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes Nature, 464 (2010),pp. 601-605
|
[51] |
Kim, J., Wu, Q., Zhang, Y. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 17206-17210
|
[52] |
Knopf, F., Hammond, C., Chekuru, A. et al. Dev. Cell, 20 (2011),pp. 713-724
|
[53] |
Kragl, M., Knapp, D., Nacu, E. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration Nature, 460 (2009),pp. 60-65
|
[54] |
Lee, Y., Hami, D., De Val, S. et al. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins Dev. Biol., 331 (2009),pp. 270-280
|
[55] |
Lenhoff, S.G., Lenhoff, H.M., Trembley, A.
|
[56] |
Lepilina, A., Coon, A.N., Kikuchi, K. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration Cell, 127 (2006),pp. 607-619
|
[57] |
Liu, S.Y., Selck, C., Friedrich, B. et al. Reactivating head regrowth in a regeneration-deficient planarian species Nature, 500 (2013),pp. 81-84
|
[58] |
Lo, D.C., Allen, F., Brockes, J.P. Reversal of muscle differentiation during urodele limb regeneration Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 7230-7234
|
[59] |
Loffredo, F.S., Steinhauser, M.L., Gannon, J. et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair Cell Stem Cell, 8 (2011),pp. 389-398
|
[60] |
Mahmoud, A.I., Kocabas, F., Muralidhar, S.A. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest Nature, 497 (2013),pp. 249-253
|
[61] |
Miyaoka, Y., Miyajima, A. To divide or not to divide: revisiting liver regeneration Cell Div., 8 (2013),p. 8
|
[62] |
Morata, G., Shlevkov, E., Perez-Garijo, A. Dev. Growth Differ., 53 (2011),pp. 168-176
|
[63] |
Morgan, T.H. Archiv für Entwicklungsmechanik der Organismen, 7 (1898),pp. 364-397
|
[64] |
Morrison, J.I., Loof, S., He, P. et al. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population J. Cell Biol., 172 (2006),pp. 433-440
|
[65] |
Murawala, P., Tanaka, E.M., Currie, J.D. Regeneration: the ultimate example of wound healing Semin. Cell Dev. Biol., 23 (2012),pp. 954-962
|
[66] |
Nam, Y.J., Song, K., Luo, X. et al. Reprogramming of human fibroblasts toward a cardiac fate Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 5588-5593
|
[67] |
Pallas, P.S.
|
[68] |
Pan, F.C., Bankaitis, E.D., Boyer, D. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration Development, 140 (2013),pp. 751-764
|
[69] |
Parente, V., Balasso, S., Pompilio, G. et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart PLoS One, 8 (2013),p. e53748
|
[70] |
Parsons, J.A., Bartke, A., Sorenson, R.L. Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones Endocrinology, 136 (1995),pp. 2013-2021
|
[71] |
Parsons, J.A., Brelje, T.C., Sorenson, R.L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion Endocrinology, 130 (1992),pp. 1459-1466
|
[72] |
Paylor, B., Natarajan, A., Zhang, R.H. et al. Nonmyogenic cells in skeletal muscle regeneration Curr. Top. Dev. Biol., 96 (2011),pp. 139-165
|
[73] |
Perl, S., Kushner, J.A., Buchholz, B.A. et al. J. Clin. Endocrinol. Metab., 95 (2010),pp. E234-E239
|
[74] |
Porrello, E.R., Mahmoud, A.I., Simpson, E. et al. Transient regenerative potential of the neonatal mouse heart Science, 331 (2011),pp. 1078-1080
|
[75] |
Poss, K.D., Wilson, L.G., Keating, M.T. Heart regeneration in zebrafish Science, 298 (2002),pp. 2188-2190
|
[76] |
Quint, E., Smith, A., Avaron, F. et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 8713-8718
|
[77] |
Rahier, J., Guiot, Y., Goebbels, R.M. et al. Pancreatic beta-cell mass in European subjects with type 2 diabetes Diabetes Obes. Metab., 10 (2008),pp. 32-42
|
[78] |
Reddien, P.W. Constitutive gene expression and the specification of tissue identity in adult planarian biology Trends Genet., 27 (2011),pp. 277-285
|
[79] |
Reddien, P.W., Oviedo, N.J., Jennings, J.R. et al. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells Science, 310 (2005),pp. 1327-1330
|
[80] |
Reyer, R.W. Regeneration of the lens in the amphibian eye Q. Rev. Biol., 29 (1954),pp. 1-46
|
[81] |
Rink, J.C., Gurley, K.A., Elliott, S.A. et al. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia Science, 326 (2009),pp. 1406-1410
|
[82] |
Sanchez Alvarado, A. Regeneration in the metazoans: why does it happen? Bioessays, 22 (2000),pp. 578-590
|
[83] |
Schmid, V. Transdifferentiation in medusae Int. Rev. Cytol., 142 (1992),pp. 213-261
|
[84] |
Seifert, A.W., Monaghan, J.R., Smith, M.D. et al. The influence of fundamental traits on mechanisms controlling appendage regeneration Biol. Rev. Camb. Philos. Soc., 87 (2012),pp. 330-345
|
[85] |
Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L. et al. Mammalian heart renewal by pre-existing cardiomyocytes Nature, 493 (2013),pp. 433-436
|
[86] |
Singh, B.N., Doyle, M.J., Weaver, C.V. et al. Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration Dev. Biol., 371 (2012),pp. 23-34
|
[87] |
Singh, S.P., Holdway, J.E., Poss, K.D. Dev. Cell, 22 (2012),pp. 879-886
|
[88] |
Slack, J.M., Beck, C.W., Gargioli, C. et al. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci., 359 (2004),pp. 745-751
|
[89] |
Smart, N., Bollini, S., Dube, K.N. et al. Nature, 474 (2011),pp. 640-644
|
[90] |
Spallanzani, L.
|
[91] |
Stewart, S., Stankunas, K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration Dev. Biol., 365 (2012),pp. 339-349
|
[92] |
Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration Development, 134 (2007),pp. 479-489
|
[93] |
Talchai, C., Xuan, S., Lin, H.V. et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure Cell, 150 (2012),pp. 1223-1234
|
[94] |
Tanaka, E.M., Reddien, P.W. The cellular basis for animal regeneration Dev. Cell, 21 (2011),pp. 172-185
|
[95] |
Tasaki, J., Shibata, N., Nishimura, O. et al. ERK signaling controls blastema cell differentiation during planarian regeneration Development, 138 (2011),pp. 2417-2427
|
[96] |
Tasaki, J., Shibata, N., Sakurai, T. et al. Role of c-Jun N-terminal kinase activation in blastema formation during planarian regeneration Dev. Growth Differ., 53 (2011),pp. 389-400
|
[97] |
Teta, M., Rankin, M.M., Long, S.Y. et al. Growth and regeneration of adult beta cells does not involve specialized progenitors Dev. Cell, 12 (2007),pp. 817-826
|
[98] |
Thorel, F., Nepote, V., Avril, I. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss Nature, 464 (2010),pp. 1149-1154
|
[99] |
Tsonis, P.A., Jang, W., Del Rio-Tsonis, K. et al. Int. J. Dev. Biol., 45 (2001),pp. 753-758
|
[100] |
Tsonis, P.A., Madhavan, M., Call, M.K. et al. Effects of a CDK inhibitor on lens regeneration Wound Repair Regen., 12 (2004),pp. 24-29
|
[101] |
Tu, S., Johnson, S.L. Fate restriction in the growing and regenerating zebrafish fin Dev. Cell, 20 (2011),pp. 725-732
|
[102] |
Umesono, Y., Tasaki, J., Nishimura, Y. et al. The molecular logic for planarian regeneration along the anterior-posterior axis Nature, 500 (2013),pp. 73-76
|
[103] |
Van de Casteele, M., Leuckx, G., Baeyens, L. et al. Cell Death Dis., 4 (2013),p. e523
|
[104] |
Wagner, D.E., Wang, I.E., Reddien, P.W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration Science, 332 (2011),pp. 811-816
|
[105] |
Wang, J., Panakova, D., Kikuchi, K. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion Development, 138 (2011),pp. 3421-3430
|
[106] |
Whited, J.L., Tabin, C.J. Limb regeneration revisited J. Biol., 8 (2009),p. 5
|
[107] |
Whitehead, G.G., Makino, S., Lien, C.L. et al. fgf20 is essential for initiating zebrafish fin regeneration Science, 310 (2005),pp. 1957-1960
|
[108] |
Xin, M., Kim, Y., Sutherland, L.B. et al. Hippo pathway effector Yap promotes cardiac regeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13839-13844
|
[109] |
Xu, X., D'Hoker, J., Stange, G. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas Cell, 132 (2008),pp. 197-207
|
[110] |
Yamada, T. Cellular and subcellular events in Wolffian lens regeneration Curr. Top. Dev. Biol., 2 (1967),pp. 247-283
|
[111] |
Yamada, T. Control mechanisms in cell-type conversion in newt lens regeneration Monogr. Dev. Biol., 13 (1977),pp. 1-126
|
[112] |
Yazawa, S., Umesono, Y., Hayashi, T. et al. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22329-22334
|
[113] |
Yokoyama, H., Ogino, H., Stoick-Cooper, C.L. et al. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration Dev. Biol., 306 (2007),pp. 170-178
|
[114] |
Zhao, L., Borikova, A.L., Ben-Yair, R. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 1403-1408
|