5.9
CiteScore
5.9
Impact Factor
Volume 42 Issue 2
Feb.  2015
Turn off MathJax
Article Contents

Regeneration across Metazoan Phylogeny: Lessons from Model Organisms

doi: 10.1016/j.jgg.2014.12.002
More Information
  • Corresponding author: E-mail address: taozhong@fudan.edu.cn (Tao P. Zhong)
  • Received Date: 2014-09-12
  • Accepted Date: 2014-12-21
  • Rev Recd Date: 2014-12-18
  • Available Online: 2015-01-05
  • Publish Date: 2015-02-20
  • Comprehending the diversity of the regenerative potential across metazoan phylogeny represents a fundamental challenge in biology. Invertebrates like Hydra and planarians exhibit amazing feats of regeneration, in which an entire organism can be restored from minute body segments. Vertebrates like teleost fish and amphibians can also regrow large sections of the body. While this regenerative capacity is greatly attenuated in mammals, there are portions of major organs that remain regenerative. Regardless of the extent, there are common basic strategies to regeneration, including activation of adult stem cells and proliferation of differentiated cells. Here, we discuss the cellular features and molecular mechanisms that are involved in regeneration in different model organisms, including Hydra, planarians, zebrafish and newts as well as in several mammalian organs.
  • loading
  • [1]
    Barbosa-Sabanero, K., Hoffmann, A., Judge, C. et al. Lens and retina regeneration: new perspectives from model organisms Biochem. J., 447 (2012),pp. 321-334
    [2]
    Bely, A.E. Evolutionary loss of animal regeneration: pattern and process Integr. Comp. Biol., 50 (2010),pp. 515-527
    [3]
    Bely, A.E., Nyberg, K.G. Evolution of animal regeneration: re-emergence of a field Trends Ecol. Evol., 25 (2010),pp. 161-170
    [4]
    Bergmann, O., Bhardwaj, R.D., Bernard, S. et al. Evidence for cardiomyocyte renewal in humans Science, 324 (2009),pp. 98-102
    [5]
    Blum, N., Begemann, G. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration Development, 139 (2012),pp. 107-116
    [6]
    Bode, H.R. Continuous conversion of neuron phenotype in hydra Trends Genet., 8 (1992),pp. 279-284
    [7]
    Bode, H.R. The interstitial cell lineage of hydra: a stem cell system that arose early in evolution J. Cell Sci., 109 (1996),pp. 1155-1164
    [8]
    Bonner-Weir, S., Sharma, A. Pancreatic stem cells J. Pathol., 197 (2002),pp. 519-526
    [9]
    Brennand, K., Huangfu, D., Melton, D. All beta cells contribute equally to islet growth and maintenance PLoS Biol., 5 (2007),p. e163
    [10]
    Bridge, D., Cunningham, C.W., DeSalle, R. et al. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence Mol. Biol. Evol., 12 (1995),pp. 679-689
    [11]
    Brockes, J.P., Kumar, A. Comparative aspects of animal regeneration Annu. Rev. Cell. Dev. Biol., 24 (2008),pp. 525-549
    [12]
    Butler, A.E., Janson, J., Bonner-Weir, S. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes Diabetes, 52 (2003),pp. 102-110
    [13]
    Carlson, B.M. Some principles of regeneration in mammalian systems Anat. Rec. B New Anat., 287 (2005),pp. 4-13
    [14]
    Chablais, F., Jazwinska, A. IGF signaling between blastema and wound epidermis is required for fin regeneration Development, 137 (2010),pp. 871-879
    [15]
    Chera, S., Ghila, L., Dobretz, K. et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration Dev. Cell, 17 (2009),pp. 279-289
    [16]
    Choi, W.Y., Gemberling, M., Wang, J. et al. Development, 140 (2013),pp. 660-666
    [17]
    Cummings, S.G., Bode, H.R. Rouxs Arch. Dev. Biol., 194 (1984),pp. 79-86
    [18]
    David, C.N., Murphy, S. Characterization of interstitial stem cells in hydra by cloning Dev. Biol., 58 (1977),pp. 372-383
    [19]
    Dor, Y., Brown, J., Martinez, O.I. et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation Nature, 429 (2004),pp. 41-46
    [20]
    Echeverri, K., Clarke, J.D., Tanaka, E.M. Dev. Biol., 236 (2001),pp. 151-164
    [21]
    Egger, B. Regeneration: rewarding, but potentially risky Birth Defects Res. C Embryo Today Rev., 84 (2008),pp. 257-264
    [22]
    Eguchi, G. Cellular and molecular background of wolffian lens regeneration Cell Differ. Dev., 25 (1988),pp. 147-158
    [23]
    Eisenhoffer, G.T., Kang, H., Sanchez Alvarado, A. Cell Stem Cell, 3 (2008),pp. 327-339
    [24]
    Ellison, G.M., Vicinanza, C., Smith, A.J. et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair Cell, 154 (2013),pp. 827-842
    [25]
    Eming, S.A., Hammerschmidt, M., Krieg, T. et al. Interrelation of immunity and tissue repair or regeneration Semin. Cell Dev. Biol., 20 (2009),pp. 517-527
    [26]
    Endo, Y., Zhang, M., Yamaji, S. et al. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells PLoS One, 7 (2012),p. e31846
    [27]
    Eulalio, A., Mano, M., Dal Ferro, M. et al. Functional screening identifies miRNAs inducing cardiac regeneration Nature, 492 (2012),pp. 376-381
    [28]
    Fang, Y., Gupta, V., Karra, R. et al. Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13416-13421
    [29]
    Gargioli, C., Slack, J.M. Development, 131 (2004),pp. 2669-2679
    [30]
    Gauron, C., Rampon, C., Bouzaffour, M. et al. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed Sci. Rep., 3 (2013),p. 2084
    [31]
    Gierer, A., Berking, S., Bode, H. et al. Regeneration of hydra from reaggregated cells Nat. New Biol., 239 (1972),pp. 98-101
    [32]
    Glazer, A.M., Wilkinson, A.W., Backer, C.B. et al. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis Dev. Biol., 337 (2010),pp. 148-156
    [33]
    Gonzalez-Rosa, J.M., Martin, V., Peralta, M. et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish Development, 138 (2011),pp. 1663-1674
    [34]
    Gurtner, G.C., Werner, S., Barrandon, Y. et al. Wound repair and regeneration Nature, 453 (2008),pp. 314-321
    [35]
    Gwon, A.E., Gruber, L.J., Mundwiler, K.E. A histologic study of lens regeneration in aphakic rabbits Invest. Ophthalmol. Vis. Sci., 31 (1990),pp. 540-547
    [36]
    Hayashi, T., Mizuno, N., Takada, R. et al. Determinative role of Wnt signals in dorsal iris derived lens regeneration in newt eye Mech. Dev., 123 (2006),pp. 793-800
    [37]
    Hayashi, T., Mizuno, N., Kondoh, H. Determinative roles of FGF and Wnt signals in iris-derived lens regeneration in newt eye Dev. Growth Differ., 50 (2008),pp. 279-287
    [38]
    Hayashi, T., Shibata, N., Okumura, R. et al. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting” function for stem cell research Dev. Growth Differ., 52 (2010),pp. 131-144
    [39]
    Henry, J.J., Elkins, M.B. Dev. Genes Evol., 211 (2001),pp. 377-387
    [40]
    Hwang, J.S., Kobayashi, C., Agata, K. et al. Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay Gene, 333 (2004),pp. 15-25
    [41]
    Inada, A., Nienaber, C., Katsuta, H. et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19915-19919
    [42]
    Jayawardena, T.M., Egemnazarov, B., Finch, E.A. et al. Circ. Res., 110 (2012),pp. 1465-1473
    [43]
    Jazwinska, A., Badakov, R., Keating, M.T. Activin-betaA signaling is required for zebrafish fin regeneration Curr. Biol., 17 (2007),pp. 1390-1395
    [44]
    Jopling, C., Sleep, E., Raya, M. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation Nature, 464 (2010),pp. 606-609
    [45]
    Jovanovic, L., Knopp, R.H., Brown, Z. et al. Declining insulin requirement in the late first trimester of diabetic pregnancy Diabetes Care, 24 (2001),pp. 1130-1136
    [46]
    Kajstura, J., Urbanek, K., Perl, S. et al. Cardiomyogenesis in the adult human heart Circ. Res., 107 (2010),pp. 305-315
    [47]
    Kang, J., Nachtrab, G., Poss, K.D. Local Dkk1 crosstalk from breeding ornaments impedes regeneration of injured male zebrafish fins Dev. Cell, 27 (2013),pp. 19-31
    [48]
    Kawakami, Y., Rodriguez Esteban, C., Raya, M. et al. Wnt/beta-catenin signaling regulates vertebrate limb regeneration Genes Dev., 20 (2006),pp. 3232-3237
    [49]
    Kikuchi, K., Holdway, J.E., Major, R.J. et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration Dev. Cell, 20 (2011),pp. 397-404
    [50]
    Kikuchi, K., Holdway, J.E., Werdich, A.A. et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes Nature, 464 (2010),pp. 601-605
    [51]
    Kim, J., Wu, Q., Zhang, Y. et al. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 17206-17210
    [52]
    Knopf, F., Hammond, C., Chekuru, A. et al. Dev. Cell, 20 (2011),pp. 713-724
    [53]
    Kragl, M., Knapp, D., Nacu, E. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration Nature, 460 (2009),pp. 60-65
    [54]
    Lee, Y., Hami, D., De Val, S. et al. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins Dev. Biol., 331 (2009),pp. 270-280
    [55]
    Lenhoff, S.G., Lenhoff, H.M., Trembley, A.
    [56]
    Lepilina, A., Coon, A.N., Kikuchi, K. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration Cell, 127 (2006),pp. 607-619
    [57]
    Liu, S.Y., Selck, C., Friedrich, B. et al. Reactivating head regrowth in a regeneration-deficient planarian species Nature, 500 (2013),pp. 81-84
    [58]
    Lo, D.C., Allen, F., Brockes, J.P. Reversal of muscle differentiation during urodele limb regeneration Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 7230-7234
    [59]
    Loffredo, F.S., Steinhauser, M.L., Gannon, J. et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair Cell Stem Cell, 8 (2011),pp. 389-398
    [60]
    Mahmoud, A.I., Kocabas, F., Muralidhar, S.A. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest Nature, 497 (2013),pp. 249-253
    [61]
    Miyaoka, Y., Miyajima, A. To divide or not to divide: revisiting liver regeneration Cell Div., 8 (2013),p. 8
    [62]
    Morata, G., Shlevkov, E., Perez-Garijo, A. Dev. Growth Differ., 53 (2011),pp. 168-176
    [63]
    Morgan, T.H. Archiv für Entwicklungsmechanik der Organismen, 7 (1898),pp. 364-397
    [64]
    Morrison, J.I., Loof, S., He, P. et al. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population J. Cell Biol., 172 (2006),pp. 433-440
    [65]
    Murawala, P., Tanaka, E.M., Currie, J.D. Regeneration: the ultimate example of wound healing Semin. Cell Dev. Biol., 23 (2012),pp. 954-962
    [66]
    Nam, Y.J., Song, K., Luo, X. et al. Reprogramming of human fibroblasts toward a cardiac fate Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 5588-5593
    [67]
    Pallas, P.S.
    [68]
    Pan, F.C., Bankaitis, E.D., Boyer, D. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration Development, 140 (2013),pp. 751-764
    [69]
    Parente, V., Balasso, S., Pompilio, G. et al. Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart PLoS One, 8 (2013),p. e53748
    [70]
    Parsons, J.A., Bartke, A., Sorenson, R.L. Number and size of islets of Langerhans in pregnant, human growth hormone-expressing transgenic, and pituitary dwarf mice: effect of lactogenic hormones Endocrinology, 136 (1995),pp. 2013-2021
    [71]
    Parsons, J.A., Brelje, T.C., Sorenson, R.L. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion Endocrinology, 130 (1992),pp. 1459-1466
    [72]
    Paylor, B., Natarajan, A., Zhang, R.H. et al. Nonmyogenic cells in skeletal muscle regeneration Curr. Top. Dev. Biol., 96 (2011),pp. 139-165
    [73]
    Perl, S., Kushner, J.A., Buchholz, B.A. et al. J. Clin. Endocrinol. Metab., 95 (2010),pp. E234-E239
    [74]
    Porrello, E.R., Mahmoud, A.I., Simpson, E. et al. Transient regenerative potential of the neonatal mouse heart Science, 331 (2011),pp. 1078-1080
    [75]
    Poss, K.D., Wilson, L.G., Keating, M.T. Heart regeneration in zebrafish Science, 298 (2002),pp. 2188-2190
    [76]
    Quint, E., Smith, A., Avaron, F. et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 8713-8718
    [77]
    Rahier, J., Guiot, Y., Goebbels, R.M. et al. Pancreatic beta-cell mass in European subjects with type 2 diabetes Diabetes Obes. Metab., 10 (2008),pp. 32-42
    [78]
    Reddien, P.W. Constitutive gene expression and the specification of tissue identity in adult planarian biology Trends Genet., 27 (2011),pp. 277-285
    [79]
    Reddien, P.W., Oviedo, N.J., Jennings, J.R. et al. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells Science, 310 (2005),pp. 1327-1330
    [80]
    Reyer, R.W. Regeneration of the lens in the amphibian eye Q. Rev. Biol., 29 (1954),pp. 1-46
    [81]
    Rink, J.C., Gurley, K.A., Elliott, S.A. et al. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia Science, 326 (2009),pp. 1406-1410
    [82]
    Sanchez Alvarado, A. Regeneration in the metazoans: why does it happen? Bioessays, 22 (2000),pp. 578-590
    [83]
    Schmid, V. Transdifferentiation in medusae Int. Rev. Cytol., 142 (1992),pp. 213-261
    [84]
    Seifert, A.W., Monaghan, J.R., Smith, M.D. et al. The influence of fundamental traits on mechanisms controlling appendage regeneration Biol. Rev. Camb. Philos. Soc., 87 (2012),pp. 330-345
    [85]
    Senyo, S.E., Steinhauser, M.L., Pizzimenti, C.L. et al. Mammalian heart renewal by pre-existing cardiomyocytes Nature, 493 (2013),pp. 433-436
    [86]
    Singh, B.N., Doyle, M.J., Weaver, C.V. et al. Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration Dev. Biol., 371 (2012),pp. 23-34
    [87]
    Singh, S.P., Holdway, J.E., Poss, K.D. Dev. Cell, 22 (2012),pp. 879-886
    [88]
    Slack, J.M., Beck, C.W., Gargioli, C. et al. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci., 359 (2004),pp. 745-751
    [89]
    Smart, N., Bollini, S., Dube, K.N. et al. Nature, 474 (2011),pp. 640-644
    [90]
    Spallanzani, L.
    [91]
    Stewart, S., Stankunas, K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration Dev. Biol., 365 (2012),pp. 339-349
    [92]
    Stoick-Cooper, C.L., Weidinger, G., Riehle, K.J. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration Development, 134 (2007),pp. 479-489
    [93]
    Talchai, C., Xuan, S., Lin, H.V. et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure Cell, 150 (2012),pp. 1223-1234
    [94]
    Tanaka, E.M., Reddien, P.W. The cellular basis for animal regeneration Dev. Cell, 21 (2011),pp. 172-185
    [95]
    Tasaki, J., Shibata, N., Nishimura, O. et al. ERK signaling controls blastema cell differentiation during planarian regeneration Development, 138 (2011),pp. 2417-2427
    [96]
    Tasaki, J., Shibata, N., Sakurai, T. et al. Role of c-Jun N-terminal kinase activation in blastema formation during planarian regeneration Dev. Growth Differ., 53 (2011),pp. 389-400
    [97]
    Teta, M., Rankin, M.M., Long, S.Y. et al. Growth and regeneration of adult beta cells does not involve specialized progenitors Dev. Cell, 12 (2007),pp. 817-826
    [98]
    Thorel, F., Nepote, V., Avril, I. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss Nature, 464 (2010),pp. 1149-1154
    [99]
    Tsonis, P.A., Jang, W., Del Rio-Tsonis, K. et al. Int. J. Dev. Biol., 45 (2001),pp. 753-758
    [100]
    Tsonis, P.A., Madhavan, M., Call, M.K. et al. Effects of a CDK inhibitor on lens regeneration Wound Repair Regen., 12 (2004),pp. 24-29
    [101]
    Tu, S., Johnson, S.L. Fate restriction in the growing and regenerating zebrafish fin Dev. Cell, 20 (2011),pp. 725-732
    [102]
    Umesono, Y., Tasaki, J., Nishimura, Y. et al. The molecular logic for planarian regeneration along the anterior-posterior axis Nature, 500 (2013),pp. 73-76
    [103]
    Van de Casteele, M., Leuckx, G., Baeyens, L. et al. Cell Death Dis., 4 (2013),p. e523
    [104]
    Wagner, D.E., Wang, I.E., Reddien, P.W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration Science, 332 (2011),pp. 811-816
    [105]
    Wang, J., Panakova, D., Kikuchi, K. et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion Development, 138 (2011),pp. 3421-3430
    [106]
    Whited, J.L., Tabin, C.J. Limb regeneration revisited J. Biol., 8 (2009),p. 5
    [107]
    Whitehead, G.G., Makino, S., Lien, C.L. et al. fgf20 is essential for initiating zebrafish fin regeneration Science, 310 (2005),pp. 1957-1960
    [108]
    Xin, M., Kim, Y., Sutherland, L.B. et al. Hippo pathway effector Yap promotes cardiac regeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13839-13844
    [109]
    Xu, X., D'Hoker, J., Stange, G. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas Cell, 132 (2008),pp. 197-207
    [110]
    Yamada, T. Cellular and subcellular events in Wolffian lens regeneration Curr. Top. Dev. Biol., 2 (1967),pp. 247-283
    [111]
    Yamada, T. Control mechanisms in cell-type conversion in newt lens regeneration Monogr. Dev. Biol., 13 (1977),pp. 1-126
    [112]
    Yazawa, S., Umesono, Y., Hayashi, T. et al. Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22329-22334
    [113]
    Yokoyama, H., Ogino, H., Stoick-Cooper, C.L. et al. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration Dev. Biol., 306 (2007),pp. 170-178
    [114]
    Zhao, L., Borikova, A.L., Ben-Yair, R. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 1403-1408
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (82) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return