5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 12
Dec.  2014
Turn off MathJax
Article Contents

G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation

doi: 10.1016/j.jgg.2014.10.004
More Information
  • Corresponding author: E-mail address: bass@bio.fsu.edu (Hank W. Bass)
  • Received Date: 2014-08-23
  • Accepted Date: 2014-10-24
  • Rev Recd Date: 2014-10-16
  • Available Online: 2014-11-04
  • Publish Date: 2014-12-20
  • The G-quadruplex (G4) elements comprise a class of nucleic acid structures formed by stacking of guanine base quartets in a quadruple helix. This G4 DNA can form within or across single-stranded DNA molecules and is mutually exclusive with duplex B-form DNA. The reversibility and structural diversity of G4s make them highly versatile genetic structures, as demonstrated by their roles in various functions including telomere metabolism, genome maintenance, immunoglobulin gene diversification, transcription, and translation. Sequence motifs capable of forming G4 DNA are typically located in telomere repeat DNA and other non-telomeric genomic loci. To investigate their potential roles in a large-genome model plant species, we computationally identified 149,988 non-telomeric G4 motifs in maize (Zea mays L., B73 AGPv2), 29% of which were in non-repetitive genomic regions. G4 motif hotspots exhibited non-random enrichment in genes at two locations on the antisense strand, one in the 5′ UTR and the other at the 5′ end of the first intron. Several genic G4 motifs were shown to adopt sequence-specific and potassium-dependent G4 DNA structures in vitro. The G4 motifs were prevalent in key regulatory genes associated with hypoxia (group VII ERFs), oxidative stress (DJ-1/GATase1), and energy status (AMPK/SnRK) pathways. They also showed statistical enrichment for genes in metabolic pathways that function in glycolysis, sugar degradation, inositol metabolism, and base excision repair. Collectively, the maize G4 motifs may represent conditional regulatory elements that can aid in energy status gene responses. Such a network of elements could provide a mechanistic basis for linking energy status signals to gene regulation in maize, a model genetic system and major world crop species for feed, food, and fuel.
  • loading
  • [1]
    Armanios, M., Blackburn, E.H. The telomere syndromes Nat. Rev. Genet., 13 (2012),pp. 693-704
    [2]
    Bailey-Serres, J., Fukao, T., Gibbs, D.J. et al. Making sense of low oxygen sensing Trends Plant Sci., 17 (2012),pp. 129-138
    [3]
    Bailey-Serres, J., Lee, S.C., Brinton, E. Waterproofing crops: effective flooding survival strategies Plant Physiol., 160 (2012),pp. 1698-1709
    [4]
    Bailey-Serres, J., Voesenek, L.A. Flooding stress: acclimations and genetic diversity Ann. Rev. Plant Biol., 59 (2008),pp. 313-339
    [5]
    Beckett, J., Burns, J., Broxson, C. et al. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene Biochemistry, 51 (2012),pp. 5257-5268
    [6]
    Bennetzen, J.L., Hake, S.C.
    [7]
    Biffi, G., Tannahill, D., McCafferty, J. et al. Quantitative visualization of DNA G-quadruplex structures in human cells Nat. Chem., 5 (2013),pp. 182-186
    [8]
    Bihmidine, S., Lin, J., Stone, J.M. et al. Planta, 237 (2013),pp. 55-64
    [9]
    Blackburn, E.H., Epel, E.S. Telomeres and adversity: too toxic to ignore Nature, 490 (2012),pp. 169-171
    [10]
    Blackburn, E.H., Greider, C.W., Szostak, J.W. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging Nat. Med., 12 (2006),pp. 1133-1138
    [11]
    Bochman, M.L., Paeschke, K., Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures Nat. Rev. Genet., 13 (2012),pp. 770-780
    [12]
    Bouche, N., Fromm, H. GABA in plants: just a metabolite? Trends Plant Sci., 9 (2004),pp. 110-115
    [13]
    Bourdoncle, A., Estevez Torres, A., Gosse, C. et al. Quadruplex-based molecular beacons as tunable DNA probes J. Am. Chem. Soc., 128 (2006),pp. 11094-11105
    [14]
    Breit, J.F., Ault-Ziel, K., Al-Mehdi, A.B. et al. Nuclear protein-induced bending and flexing of the hypoxic response element of the rat vascular endothelial growth factor promoter FASEB J., 22 (2008),pp. 19-29
    [15]
    Brooks, T.A., Hurley, L.H. The role of supercoiling in transcriptional control of myc and its importance in molecular therapeutics Nat. Rev. Cancer, 9 (2009),pp. 849-861
    [16]
    Brooks, T.A., Hurley, L.H. Targeting MYC expression through G-quadruplexes Genes Cancer, 1 (2010),pp. 641-649
    [17]
    Brooks, T.A., Kendrick, S., Hurley, L. Making sense of G-quadruplex and i-motif functions in oncogene promoters FEBS J., 277 (2010),pp. 3459-3469
    [18]
    Brown, A.N., Lauter, N., Vera, D.L. et al. G3: Genes, Genomes, Genetics, 1 (2011),pp. 437-450
    [19]
    Brown, R.V., Danford, F.L., Gokhale, V. et al. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex J. Biol. Chem., 286 (2011),pp. 41018-41027
    [20]
    Bugaut, A., Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes Biochemistry, 47 (2008),pp. 689-697
    [21]
    Burge, S., Parkinson, G.N., Hazel, P. et al. Quadruplex DNA: sequence, topology and structure Nucleic Acids Res., 34 (2006),pp. 5402-5415
    [22]
    Cahoon, L.A., Seifert, H.S. PLoS Pathog., 9 (2013),p. e1003074
    [23]
    Caldana, C., Li, Y., Leisse, A. et al. Plant J., 73 (2013),pp. 897-909
    [24]
    Capra, J.A., Paeschke, K., Singh, M. et al. PLoS Comput. Biol., 6 (2010),p. e1000861
    [25]
    Chen, Y., Yang, D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs Curr. Protoc. Nucleic Acid Chem. (2012)
    [26]
    Chinnapen, D.J., Sen, D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 65-69
    [27]
    Clark, D.W., Phang, T., Edwards, M.G. et al. Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription Free Radic. Biol. Med., 53 (2012),pp. 51-59
    [28]
    Cogoi, S., Xodo, L.E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription Nucleic Acids Res., 34 (2006),pp. 2536-2549
    [29]
    Davis, G.L., McMullen, M.D., Baysdorfer, C. et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map Genetics, 152 (1999),pp. 1137-1172
    [30]
    De Armond, R., Wood, S., Sun, D. et al. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter Biochemistry, 44 (2005),pp. 16341-16350
    [31]
    Dexheimer, T.S., Sun, D., Hurley, L.H. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter J. Am. Chem. Soc., 128 (2006),pp. 5404-5415
    [32]
    Dobrenel, T., Marchive, C., Azzopardi, M. et al. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front. Plant Sci., 4 (2013),p. 93
    [33]
    Du, Z., Zhao, Y., Li, N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription Genome Res., 18 (2008),pp. 233-241
    [34]
    Du, Z., Zhao, Y., Li, N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs Nucleic Acids Res., 37 (2009),pp. 6784-6798
    [35]
    Eddy, J., Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome Nucleic Acids Res., 34 (2006),pp. 3887-3896
    [36]
    Eddy, J., Maizels, N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes Nucleic Acids Res., 36 (2008),pp. 1321-1333
    [37]
    Eddy, J., Vallur, A.C., Varma, S. et al. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes Nucleic Acids Res., 39 (2011),pp. 4975-4983
    [38]
    Epstein, A.C., Gleadle, J.M., McNeill, L.A. et al. Cell, 107 (2001),pp. 43-54
    [39]
    Ferjani, A., Segami, S., Horiguchi, G. et al. Plant Cell, 23 (2011),pp. 2895-2908
    [40]
    Fernando, H., Reszka, A.P., Huppert, J. et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene Biochemistry, 45 (2006),pp. 7854-7860
    [41]
    Foyer, C.H., Noctor, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses Plant Cell, 17 (2005),pp. 1866-1875
    [42]
    Foyer, C.H., Noctor, G. Ascorbate and glutathione: the heart of the redox hub Plant Physiol., 155 (2011),pp. 2-18
    [43]
    Fukao, T., Yeung, E., Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice Plant Cell, 23 (2011),pp. 412-427
    [44]
    Gibbs, D.J., Lee, S.C., Isa, N.M. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants Nature, 479 (2011),pp. 415-418
    [45]
    Goodstein, D.M., Shu, S., Howson, R. et al. Phytozome: a comparative platform for green plant genomics Nucleic Acids Res., 40 (2012),pp. D1178-D1186
    [46]
    Gray, J., Bevan, M., Brutnell, T. et al. A recommendation for naming transcription factor proteins in the grasses Plant Physiol., 149 (2009),pp. 4-6
    [47]
    Guo, K., Gokhale, V., Hurley, L.H. et al. Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene Nucleic Acids Res., 36 (2008),pp. 4598-4608
    [48]
    Guo, K., Pourpak, A., Beetz-Rogers, K. et al. J. Am. Chem. Soc., 129 (2007),pp. 10220-10228
    [49]
    Halder, K., Halder, R., Chowdhury, S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals Mol. Biosyst, 5 (2009),pp. 1703-1712
    [50]
    Hazel, P., Huppert, J., Balasubramanian, S. et al. Loop-length-dependent folding of G-quadruplexes J. Am. Chem. Soc., 126 (2004),pp. 16405-16415
    [51]
    Henderson, A., Wu, Y., Huang, Y.C. et al. Detection of G-quadruplex DNA in mammalian cells Nucleic Acids Res., 42 (2014),pp. 860-869
    [52]
    Hershman, S.G., Chen, Q., Lee, J.Y. et al. Nucleic Acids Res., 36 (2008),pp. 144-156
    [53]
    Huber, M.D., Duquette, M.L., Shiels, J.C. et al. A conserved G4 DNA binding domain in RecQ family helicases J. Mol. Biol., 358 (2006),pp. 1071-1080
    [54]
    Huber, S.C., Akazawa, T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells Plant Physiol., 81 (1986),pp. 1008-1013
    [55]
    Huppert, J.L. Four-stranded DNA: cancer, gene regulation and drug development Philos. Trans. A. Math. Phys. Eng. Sci., 365 (2007),pp. 2969-2984
    [56]
    Huppert, J.L. Structure, location and interactions of G-quadruplexes FEBS J., 277 (2010),pp. 3452-3458
    [57]
    Huppert, J.L., Balasubramanian, S. Prevalence of quadruplexes in the human genome Nucleic Acids Res., 33 (2005),pp. 2908-2916
    [58]
    Ivan, M., Kondo, K., Yang, H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing Science, 292 (2001),pp. 464-468
    [59]
    Jaakkola, P., Mole, D.R., Tian, Y.M. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation Science, 292 (2001),pp. 468-472
    [60]
    Jakoby, M., Weisshaar, B., Droge-Laser, W. et al. Trends Plant Sci., 7 (2002),pp. 106-111
    [61]
    Juranek, S.A., Paeschke, K. Cell cycle regulation of G-quadruplex DNA structures at telomeres Curr. Pharm. Des., 18 (2012),pp. 1867-1872
    [62]
    Karp, P.D., Paley, S.M., Krummenacker, M. et al. Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology Brief. Bioinform., 11 (2010),pp. 40-79
    [63]
    Kelliher, T., Walbot, V. Hypoxia triggers meiotic fate acquisition in maize Science, 337 (2012),pp. 345-348
    [64]
    Keunen, E., Peshev, D., Vangronsveld, J. et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept Plant Cell Environ., 36 (2013),pp. 242-1255
    [65]
    Kikin, O., D'Antonio, L., Bagga, P.S. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences Nucleic Acids Res., 34 (2006),pp. W676-W682
    [66]
    Koch, K.E. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development Curr. Opin. Plant Biol., 7 (2004),pp. 235-246
    [67]
    Koch, K.E. Carbohydrate-modulated gene expression in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 47 (1996),pp. 509-540
    [68]
    Koch, K.E., Ying, Z., Wu, Y. et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism J. Exp. Bot., 51 (2000),pp. 417-427
    [69]
    Lam, E.Y., Beraldi, D., Tannahill, D. et al. G-quadruplex structures are stable and detectable in human genomic DNA Nat. Commun., 4 (2013),p. 1796
    [70]
    Laurie, D.A., Bennett, M.D. Heredity, 55 (1985),pp. 307-313
    [71]
    Lexa, M., Kejnovsky, E., Steflova, P. et al. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons Nucleic Acids Res., 42 (2014),pp. 968-978
    [72]
    Licausi, F., Kosmacz, M., Weits, D.A. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization Nature, 479 (2011),pp. 419-422
    [73]
    Loescher, W.H. Physiology and metabolism of sugar alcohols in higher plants Physiol. Plant., 70 (1987),pp. 553-557
    [74]
    Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells Nat. Struct. Mol. Biol., 13 (2006),pp. 1055-1059
    [75]
    Maizels, N., Gray, L.T. The G4 genome PLoS Genet., 9 (2013),p. e1003468
    [76]
    Mani, P., Yadav, V.K., Das, S.K. et al. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination PLoS ONE, 4 (2009),p. e4399
    [77]
    Marchler-Bauer, A., Zheng, C., Chitsaz, F. et al. CDD: conserved domains and protein three-dimensional structure Nucleic Acids Res., 41 (2013),pp. D348-D352
    [78]
    Menendez, C., Frees, S., Bagga, P.S. QGRS-H predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences Nucleic Acids Res., 40 (2012),pp. W96-W103
    [79]
    Milanesi, L., D'Angelo, D., Rogozin, I.B. GeneBuilder: interactive in silico prediction of gene structure Bioinformatics, 15 (1999),pp. 612-621
    [80]
    Monaco, M.K., Sen, T.Z., Dharmawardhana, P.D. et al. Maize metabolic network construction and transcriptome analysis Plant Genome, 6 (2013)
    [81]
    Mullen, M.A., Olson, K.J., Dallaire, P. et al. Nucleic Acids Res., 38 (2010),pp. 8149-8163
    [82]
    Nakano, T., Suzuki, K., Fujimura, T. et al. Plant Physiol., 140 (2006),pp. 411-432
    [83]
    Nishizawa, A., Yabuta, Y., Shigeoka, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage Plant Physiol., 147 (2008),pp. 1251-1263
    [84]
    Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
    [85]
    Palumbo, S.L., Ebbinghaus, S.W., Hurley, L.H. J. Am. Chem. Soc., 131 (2009),pp. 10878-10891
    [86]
    Palumbo, S.L., Memmott, R.M., Uribe, D.J. et al. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity Nucleic Acids Res., 36 (2008),pp. 1755-1769
    [87]
    Pontier, D.B., Kruisselbrink, E., Guryev, V. et al. Isolation of deletion alleles by G4 DNA-induced mutagenesis Nat. Meth., 6 (2009),pp. 655-657
    [88]
    Punta, M., Coggill, P.C., Eberhardt, R.Y. et al. The PFAM protein families database. Nucleic Acids Res. (2012),pp. D290-D301
    [89]
    Qin, Y., Fortin, J.S., Tye, D. et al. Molecular cloning of the human platelet-derived growth factor receptor beta (PDGFR-beta) promoter and drug targeting of the G-quadruplex-forming region to repress pdgfr-beta expression Biochemistry, 49 (2010),pp. 4208-4219
    [90]
    Qin, Y., Hurley, L.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions Biochimie, 90 (2008),pp. 1149-1171
    [91]
    Rawal, P., Kummarasetti, V.B., Ravindran, J. et al. Genome Res., 16 (2006),pp. 644-655
    [92]
    Robaglia, C., Thomas, M., Meyer, C. Sensing nutrient and energy status by SnRK1 and TOR kinases Curr. Opin. Plant Biol., 15 (2012),pp. 301-307
    [93]
    Rolletschek, H., Koch, K., Wobus, U. et al. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo Plant J., 42 (2005),pp. 69-83
    [94]
    Rolletschek, H., Melkus, G., Grafahrend-Belau, E. et al. Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm Plant Cell, 23 (2011),pp. 3041-3054
    [95]
    Ruan, Y.L., Jin, Y., Yang, Y.J. et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat Mol. Plant, 3 (2010),pp. 942-955
    [96]
    Ruchko, M.V., Gorodnya, O.M., Pastukh, V.M. et al. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes Free Radic. Biol. Med., 46 (2009),pp. 352-359
    [97]
    Sachs, M.M., Freeling, M., Okimoto, R. The anaerobic proteins of maize Cell, 20 (1980),pp. 761-767
    [98]
    Salamov, A.A., Solovyev, V.V. Genome Res., 10 (2000),pp. 516-522
    [99]
    SanMiguel, P., Gaut, B.S., Tikhonov, A. et al. The paleontology of intergene retrotransposons of maize Nat. Genet., 20 (1998),pp. 43-45
    [100]
    Schnable, J.C., Freeling, M., Lyons, E. Genome-wide analysis of syntenic gene deletion in the grasses Genome Biol. Evol., 4 (2012),pp. 265-277
    [101]
    Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [102]
    Sen, D., Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis Nature, 334 (1988),pp. 364-366
    [103]
    Sen, T.Z., Andorf, C.M., Schaeffer, M.L. et al. MaizeGDB becomes ‘sequence-centric’ Database (Oxford), 2009 (2009),p. bap020
    [104]
    Shen, B., Hohmann, S., Jensen, R.G. et al. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast Plant Physiol., 121 (1999),pp. 45-52
    [105]
    Sickler, C.M., Edwards, G.E., Kiirats, O. et al. Funct. Plant Biol., 34 (2007),pp. 382-391
    [106]
    Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 11593-11598
    [107]
    Simonsson, T. G-quadruplex DNA structures–variations on a theme Biol. Chem., 382 (2001),pp. 621-628
    [108]
    Stegle, O., Payet, L., Mergny, J.L. et al. Predicting and understanding the stability of G-quadruplexes Bioinformatics, 25 (2009),pp. i374-382
    [109]
    Sulpice, R., Trenkamp, S., Steinfath, M. et al. Plant Cell, 22 (2010),pp. 2872-2893
    [110]
    Sun, D., Hurley, L.H. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay Methods Mol. Biol., 608 (2010),pp. 65-79
    [111]
    Sundquist, W.I., Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops Nature, 342 (1989),pp. 825-829
    [112]
    Takahashi, H., Nakagawa, A., Kojima, S. et al. Discovery of novel rules for G-quadruplex-forming sequences in plants by using bioinformatics methods J. Biosci. Bioeng., 114 (2012),pp. 570-575
    [113]
    Thimm, O., Blasing, O., Gibon, Y. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes Plant J., 37 (2004),pp. 914-939
    [114]
    Tiessen, A., Padilla-Chacon, D. Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning Front. Plant Sci., 3 (2012),p. 306
    [115]
    Todd, A.K., Johnston, M., Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA Nucleic Acids Res., 33 (2005),pp. 2901-2907
    [116]
    Todd, A.K., Neidle, S. Mapping the sequences of potential guanine quadruplex motifs Nucleic Acids Res., 39 (2011),pp. 4917-4927
    [117]
    Valluru, R., Van den Ende, W. Myo-inositol and beyond–emerging networks under stress Plant Sci., 181 (2011),pp. 387-400
    [118]
    Verma, A., Halder, K., Halder, R. et al. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species J. Med. Chem., 51 (2008),pp. 5641-5649
    [119]
    Verma, A., Yadav, V.K., Basundra, R. et al. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells Nucleic Acids Res., 37 (2009),pp. 4194-4204
    [120]
    Weng, H.Y., Huang, H.L., Zhao, P.P. et al. Translational repression of cyclin D3 by a stable G-quadruplex in its 5′ UTR: implications for cell cycle regulation RNA Biol., 9 (2012),pp. 1099-1109
    [121]
    Williamson, J.R., Raghuraman, M.K., Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model Cell, 59 (1989),pp. 871-880
    [122]
    Wong, H.M., Stegle, O., Rodgers, S. et al. A toolbox for predicting G-quadruplex formation and stability J. Nucleic Acids, 2010 (2010)
    [123]
    Wouters, A., Boeckx, C., Vermorken, J.B. et al. The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic microenvironment and hypoxia-inducible factors Curr. Pharm. Des., 19 (2013),pp. 907-917
    [124]
    Xiong, Y., McCormack, M., Li, L. et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems Nature, 496 (2013),pp. 181-186
    [125]
    Xu, X.M., Lin, H., Maple, J. et al. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation J. Cell Sci., 123 (2010),pp. 1644-1651
    [126]
    Xu, Y., Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb) Nucleic Acids Res., 34 (2006),pp. 949-954
    [127]
    Yadav, V.K., Abraham, J.K., Mani, P. et al. QuadBase: genome-wide database of G4 DNA–occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes Nucleic Acids Res., 36 (2008),pp. D381-D385
    [128]
    Yang, D., Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs Future Med. Chem., 2 (2010),pp. 619-646
    [129]
    Yatabe, N., Kyo, S., Maida, Y. et al. HIF-1-mediated activation of telomerase in cervical cancer cells Oncogene, 23 (2004),pp. 3708-3715
    [130]
    Youens-Clark, K., Buckler, E., Casstevens, T. et al. Gramene database in 2010: updates and extensions Nucleic Acids Res., 39 (2011),pp. D1085-D1094
    [131]
    Yu, R.M., Chen, E.X., Kong, R.Y. et al. BMC Mol. Biol., 7 (2006),p. 27
    [132]
    Yuan, L., Tian, T., Chen, Y. et al. Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy Sci. Rep., 3 (2013),p. 1811
    [133]
    Zeng, Y., Wu, Y., Avigne, W.T. et al. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses Plant Physiol., 116 (1998),pp. 1573-1583
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (123) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return