[1] |
Armanios, M., Blackburn, E.H. The telomere syndromes Nat. Rev. Genet., 13 (2012),pp. 693-704
|
[2] |
Bailey-Serres, J., Fukao, T., Gibbs, D.J. et al. Making sense of low oxygen sensing Trends Plant Sci., 17 (2012),pp. 129-138
|
[3] |
Bailey-Serres, J., Lee, S.C., Brinton, E. Waterproofing crops: effective flooding survival strategies Plant Physiol., 160 (2012),pp. 1698-1709
|
[4] |
Bailey-Serres, J., Voesenek, L.A. Flooding stress: acclimations and genetic diversity Ann. Rev. Plant Biol., 59 (2008),pp. 313-339
|
[5] |
Beckett, J., Burns, J., Broxson, C. et al. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene Biochemistry, 51 (2012),pp. 5257-5268
|
[6] |
Bennetzen, J.L., Hake, S.C.
|
[7] |
Biffi, G., Tannahill, D., McCafferty, J. et al. Quantitative visualization of DNA G-quadruplex structures in human cells Nat. Chem., 5 (2013),pp. 182-186
|
[8] |
Bihmidine, S., Lin, J., Stone, J.M. et al. Planta, 237 (2013),pp. 55-64
|
[9] |
Blackburn, E.H., Epel, E.S. Telomeres and adversity: too toxic to ignore Nature, 490 (2012),pp. 169-171
|
[10] |
Blackburn, E.H., Greider, C.W., Szostak, J.W. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging Nat. Med., 12 (2006),pp. 1133-1138
|
[11] |
Bochman, M.L., Paeschke, K., Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures Nat. Rev. Genet., 13 (2012),pp. 770-780
|
[12] |
Bouche, N., Fromm, H. GABA in plants: just a metabolite? Trends Plant Sci., 9 (2004),pp. 110-115
|
[13] |
Bourdoncle, A., Estevez Torres, A., Gosse, C. et al. Quadruplex-based molecular beacons as tunable DNA probes J. Am. Chem. Soc., 128 (2006),pp. 11094-11105
|
[14] |
Breit, J.F., Ault-Ziel, K., Al-Mehdi, A.B. et al. Nuclear protein-induced bending and flexing of the hypoxic response element of the rat vascular endothelial growth factor promoter FASEB J., 22 (2008),pp. 19-29
|
[15] |
Brooks, T.A., Hurley, L.H. The role of supercoiling in transcriptional control of myc and its importance in molecular therapeutics Nat. Rev. Cancer, 9 (2009),pp. 849-861
|
[16] |
Brooks, T.A., Hurley, L.H. Targeting MYC expression through G-quadruplexes Genes Cancer, 1 (2010),pp. 641-649
|
[17] |
Brooks, T.A., Kendrick, S., Hurley, L. Making sense of G-quadruplex and i-motif functions in oncogene promoters FEBS J., 277 (2010),pp. 3459-3469
|
[18] |
Brown, A.N., Lauter, N., Vera, D.L. et al. G3: Genes, Genomes, Genetics, 1 (2011),pp. 437-450
|
[19] |
Brown, R.V., Danford, F.L., Gokhale, V. et al. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex J. Biol. Chem., 286 (2011),pp. 41018-41027
|
[20] |
Bugaut, A., Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes Biochemistry, 47 (2008),pp. 689-697
|
[21] |
Burge, S., Parkinson, G.N., Hazel, P. et al. Quadruplex DNA: sequence, topology and structure Nucleic Acids Res., 34 (2006),pp. 5402-5415
|
[22] |
Cahoon, L.A., Seifert, H.S. PLoS Pathog., 9 (2013),p. e1003074
|
[23] |
Caldana, C., Li, Y., Leisse, A. et al. Plant J., 73 (2013),pp. 897-909
|
[24] |
Capra, J.A., Paeschke, K., Singh, M. et al. PLoS Comput. Biol., 6 (2010),p. e1000861
|
[25] |
Chen, Y., Yang, D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs Curr. Protoc. Nucleic Acid Chem. (2012)
|
[26] |
Chinnapen, D.J., Sen, D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 65-69
|
[27] |
Clark, D.W., Phang, T., Edwards, M.G. et al. Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription Free Radic. Biol. Med., 53 (2012),pp. 51-59
|
[28] |
Cogoi, S., Xodo, L.E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription Nucleic Acids Res., 34 (2006),pp. 2536-2549
|
[29] |
Davis, G.L., McMullen, M.D., Baysdorfer, C. et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map Genetics, 152 (1999),pp. 1137-1172
|
[30] |
De Armond, R., Wood, S., Sun, D. et al. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter Biochemistry, 44 (2005),pp. 16341-16350
|
[31] |
Dexheimer, T.S., Sun, D., Hurley, L.H. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter J. Am. Chem. Soc., 128 (2006),pp. 5404-5415
|
[32] |
Dobrenel, T., Marchive, C., Azzopardi, M. et al. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front. Plant Sci., 4 (2013),p. 93
|
[33] |
Du, Z., Zhao, Y., Li, N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription Genome Res., 18 (2008),pp. 233-241
|
[34] |
Du, Z., Zhao, Y., Li, N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs Nucleic Acids Res., 37 (2009),pp. 6784-6798
|
[35] |
Eddy, J., Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome Nucleic Acids Res., 34 (2006),pp. 3887-3896
|
[36] |
Eddy, J., Maizels, N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes Nucleic Acids Res., 36 (2008),pp. 1321-1333
|
[37] |
Eddy, J., Vallur, A.C., Varma, S. et al. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes Nucleic Acids Res., 39 (2011),pp. 4975-4983
|
[38] |
Epstein, A.C., Gleadle, J.M., McNeill, L.A. et al. Cell, 107 (2001),pp. 43-54
|
[39] |
Ferjani, A., Segami, S., Horiguchi, G. et al. Plant Cell, 23 (2011),pp. 2895-2908
|
[40] |
Fernando, H., Reszka, A.P., Huppert, J. et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene Biochemistry, 45 (2006),pp. 7854-7860
|
[41] |
Foyer, C.H., Noctor, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses Plant Cell, 17 (2005),pp. 1866-1875
|
[42] |
Foyer, C.H., Noctor, G. Ascorbate and glutathione: the heart of the redox hub Plant Physiol., 155 (2011),pp. 2-18
|
[43] |
Fukao, T., Yeung, E., Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice Plant Cell, 23 (2011),pp. 412-427
|
[44] |
Gibbs, D.J., Lee, S.C., Isa, N.M. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants Nature, 479 (2011),pp. 415-418
|
[45] |
Goodstein, D.M., Shu, S., Howson, R. et al. Phytozome: a comparative platform for green plant genomics Nucleic Acids Res., 40 (2012),pp. D1178-D1186
|
[46] |
Gray, J., Bevan, M., Brutnell, T. et al. A recommendation for naming transcription factor proteins in the grasses Plant Physiol., 149 (2009),pp. 4-6
|
[47] |
Guo, K., Gokhale, V., Hurley, L.H. et al. Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene Nucleic Acids Res., 36 (2008),pp. 4598-4608
|
[48] |
Guo, K., Pourpak, A., Beetz-Rogers, K. et al. J. Am. Chem. Soc., 129 (2007),pp. 10220-10228
|
[49] |
Halder, K., Halder, R., Chowdhury, S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals Mol. Biosyst, 5 (2009),pp. 1703-1712
|
[50] |
Hazel, P., Huppert, J., Balasubramanian, S. et al. Loop-length-dependent folding of G-quadruplexes J. Am. Chem. Soc., 126 (2004),pp. 16405-16415
|
[51] |
Henderson, A., Wu, Y., Huang, Y.C. et al. Detection of G-quadruplex DNA in mammalian cells Nucleic Acids Res., 42 (2014),pp. 860-869
|
[52] |
Hershman, S.G., Chen, Q., Lee, J.Y. et al. Nucleic Acids Res., 36 (2008),pp. 144-156
|
[53] |
Huber, M.D., Duquette, M.L., Shiels, J.C. et al. A conserved G4 DNA binding domain in RecQ family helicases J. Mol. Biol., 358 (2006),pp. 1071-1080
|
[54] |
Huber, S.C., Akazawa, T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells Plant Physiol., 81 (1986),pp. 1008-1013
|
[55] |
Huppert, J.L. Four-stranded DNA: cancer, gene regulation and drug development Philos. Trans. A. Math. Phys. Eng. Sci., 365 (2007),pp. 2969-2984
|
[56] |
Huppert, J.L. Structure, location and interactions of G-quadruplexes FEBS J., 277 (2010),pp. 3452-3458
|
[57] |
Huppert, J.L., Balasubramanian, S. Prevalence of quadruplexes in the human genome Nucleic Acids Res., 33 (2005),pp. 2908-2916
|
[58] |
Ivan, M., Kondo, K., Yang, H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing Science, 292 (2001),pp. 464-468
|
[59] |
Jaakkola, P., Mole, D.R., Tian, Y.M. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation Science, 292 (2001),pp. 468-472
|
[60] |
Jakoby, M., Weisshaar, B., Droge-Laser, W. et al. Trends Plant Sci., 7 (2002),pp. 106-111
|
[61] |
Juranek, S.A., Paeschke, K. Cell cycle regulation of G-quadruplex DNA structures at telomeres Curr. Pharm. Des., 18 (2012),pp. 1867-1872
|
[62] |
Karp, P.D., Paley, S.M., Krummenacker, M. et al. Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology Brief. Bioinform., 11 (2010),pp. 40-79
|
[63] |
Kelliher, T., Walbot, V. Hypoxia triggers meiotic fate acquisition in maize Science, 337 (2012),pp. 345-348
|
[64] |
Keunen, E., Peshev, D., Vangronsveld, J. et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept Plant Cell Environ., 36 (2013),pp. 242-1255
|
[65] |
Kikin, O., D'Antonio, L., Bagga, P.S. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences Nucleic Acids Res., 34 (2006),pp. W676-W682
|
[66] |
Koch, K.E. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development Curr. Opin. Plant Biol., 7 (2004),pp. 235-246
|
[67] |
Koch, K.E. Carbohydrate-modulated gene expression in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 47 (1996),pp. 509-540
|
[68] |
Koch, K.E., Ying, Z., Wu, Y. et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism J. Exp. Bot., 51 (2000),pp. 417-427
|
[69] |
Lam, E.Y., Beraldi, D., Tannahill, D. et al. G-quadruplex structures are stable and detectable in human genomic DNA Nat. Commun., 4 (2013),p. 1796
|
[70] |
Laurie, D.A., Bennett, M.D. Heredity, 55 (1985),pp. 307-313
|
[71] |
Lexa, M., Kejnovsky, E., Steflova, P. et al. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons Nucleic Acids Res., 42 (2014),pp. 968-978
|
[72] |
Licausi, F., Kosmacz, M., Weits, D.A. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization Nature, 479 (2011),pp. 419-422
|
[73] |
Loescher, W.H. Physiology and metabolism of sugar alcohols in higher plants Physiol. Plant., 70 (1987),pp. 553-557
|
[74] |
Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells Nat. Struct. Mol. Biol., 13 (2006),pp. 1055-1059
|
[75] |
Maizels, N., Gray, L.T. The G4 genome PLoS Genet., 9 (2013),p. e1003468
|
[76] |
Mani, P., Yadav, V.K., Das, S.K. et al. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination PLoS ONE, 4 (2009),p. e4399
|
[77] |
Marchler-Bauer, A., Zheng, C., Chitsaz, F. et al. CDD: conserved domains and protein three-dimensional structure Nucleic Acids Res., 41 (2013),pp. D348-D352
|
[78] |
Menendez, C., Frees, S., Bagga, P.S. QGRS-H predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences Nucleic Acids Res., 40 (2012),pp. W96-W103
|
[79] |
Milanesi, L., D'Angelo, D., Rogozin, I.B. GeneBuilder: interactive in silico prediction of gene structure Bioinformatics, 15 (1999),pp. 612-621
|
[80] |
Monaco, M.K., Sen, T.Z., Dharmawardhana, P.D. et al. Maize metabolic network construction and transcriptome analysis Plant Genome, 6 (2013)
|
[81] |
Mullen, M.A., Olson, K.J., Dallaire, P. et al. Nucleic Acids Res., 38 (2010),pp. 8149-8163
|
[82] |
Nakano, T., Suzuki, K., Fujimura, T. et al. Plant Physiol., 140 (2006),pp. 411-432
|
[83] |
Nishizawa, A., Yabuta, Y., Shigeoka, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage Plant Physiol., 147 (2008),pp. 1251-1263
|
[84] |
Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
|
[85] |
Palumbo, S.L., Ebbinghaus, S.W., Hurley, L.H. J. Am. Chem. Soc., 131 (2009),pp. 10878-10891
|
[86] |
Palumbo, S.L., Memmott, R.M., Uribe, D.J. et al. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity Nucleic Acids Res., 36 (2008),pp. 1755-1769
|
[87] |
Pontier, D.B., Kruisselbrink, E., Guryev, V. et al. Isolation of deletion alleles by G4 DNA-induced mutagenesis Nat. Meth., 6 (2009),pp. 655-657
|
[88] |
Punta, M., Coggill, P.C., Eberhardt, R.Y. et al. The PFAM protein families database. Nucleic Acids Res. (2012),pp. D290-D301
|
[89] |
Qin, Y., Fortin, J.S., Tye, D. et al. Molecular cloning of the human platelet-derived growth factor receptor beta (PDGFR-beta) promoter and drug targeting of the G-quadruplex-forming region to repress pdgfr-beta expression Biochemistry, 49 (2010),pp. 4208-4219
|
[90] |
Qin, Y., Hurley, L.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions Biochimie, 90 (2008),pp. 1149-1171
|
[91] |
Rawal, P., Kummarasetti, V.B., Ravindran, J. et al. Genome Res., 16 (2006),pp. 644-655
|
[92] |
Robaglia, C., Thomas, M., Meyer, C. Sensing nutrient and energy status by SnRK1 and TOR kinases Curr. Opin. Plant Biol., 15 (2012),pp. 301-307
|
[93] |
Rolletschek, H., Koch, K., Wobus, U. et al. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo Plant J., 42 (2005),pp. 69-83
|
[94] |
Rolletschek, H., Melkus, G., Grafahrend-Belau, E. et al. Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm Plant Cell, 23 (2011),pp. 3041-3054
|
[95] |
Ruan, Y.L., Jin, Y., Yang, Y.J. et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat Mol. Plant, 3 (2010),pp. 942-955
|
[96] |
Ruchko, M.V., Gorodnya, O.M., Pastukh, V.M. et al. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes Free Radic. Biol. Med., 46 (2009),pp. 352-359
|
[97] |
Sachs, M.M., Freeling, M., Okimoto, R. The anaerobic proteins of maize Cell, 20 (1980),pp. 761-767
|
[98] |
Salamov, A.A., Solovyev, V.V. Genome Res., 10 (2000),pp. 516-522
|
[99] |
SanMiguel, P., Gaut, B.S., Tikhonov, A. et al. The paleontology of intergene retrotransposons of maize Nat. Genet., 20 (1998),pp. 43-45
|
[100] |
Schnable, J.C., Freeling, M., Lyons, E. Genome-wide analysis of syntenic gene deletion in the grasses Genome Biol. Evol., 4 (2012),pp. 265-277
|
[101] |
Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
|
[102] |
Sen, D., Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis Nature, 334 (1988),pp. 364-366
|
[103] |
Sen, T.Z., Andorf, C.M., Schaeffer, M.L. et al. MaizeGDB becomes ‘sequence-centric’ Database (Oxford), 2009 (2009),p. bap020
|
[104] |
Shen, B., Hohmann, S., Jensen, R.G. et al. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast Plant Physiol., 121 (1999),pp. 45-52
|
[105] |
Sickler, C.M., Edwards, G.E., Kiirats, O. et al. Funct. Plant Biol., 34 (2007),pp. 382-391
|
[106] |
Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 11593-11598
|
[107] |
Simonsson, T. G-quadruplex DNA structures–variations on a theme Biol. Chem., 382 (2001),pp. 621-628
|
[108] |
Stegle, O., Payet, L., Mergny, J.L. et al. Predicting and understanding the stability of G-quadruplexes Bioinformatics, 25 (2009),pp. i374-382
|
[109] |
Sulpice, R., Trenkamp, S., Steinfath, M. et al. Plant Cell, 22 (2010),pp. 2872-2893
|
[110] |
Sun, D., Hurley, L.H. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay Methods Mol. Biol., 608 (2010),pp. 65-79
|
[111] |
Sundquist, W.I., Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops Nature, 342 (1989),pp. 825-829
|
[112] |
Takahashi, H., Nakagawa, A., Kojima, S. et al. Discovery of novel rules for G-quadruplex-forming sequences in plants by using bioinformatics methods J. Biosci. Bioeng., 114 (2012),pp. 570-575
|
[113] |
Thimm, O., Blasing, O., Gibon, Y. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes Plant J., 37 (2004),pp. 914-939
|
[114] |
Tiessen, A., Padilla-Chacon, D. Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning Front. Plant Sci., 3 (2012),p. 306
|
[115] |
Todd, A.K., Johnston, M., Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA Nucleic Acids Res., 33 (2005),pp. 2901-2907
|
[116] |
Todd, A.K., Neidle, S. Mapping the sequences of potential guanine quadruplex motifs Nucleic Acids Res., 39 (2011),pp. 4917-4927
|
[117] |
Valluru, R., Van den Ende, W. Myo-inositol and beyond–emerging networks under stress Plant Sci., 181 (2011),pp. 387-400
|
[118] |
Verma, A., Halder, K., Halder, R. et al. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species J. Med. Chem., 51 (2008),pp. 5641-5649
|
[119] |
Verma, A., Yadav, V.K., Basundra, R. et al. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells Nucleic Acids Res., 37 (2009),pp. 4194-4204
|
[120] |
Weng, H.Y., Huang, H.L., Zhao, P.P. et al. Translational repression of cyclin D3 by a stable G-quadruplex in its 5′ UTR: implications for cell cycle regulation RNA Biol., 9 (2012),pp. 1099-1109
|
[121] |
Williamson, J.R., Raghuraman, M.K., Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model Cell, 59 (1989),pp. 871-880
|
[122] |
Wong, H.M., Stegle, O., Rodgers, S. et al. A toolbox for predicting G-quadruplex formation and stability J. Nucleic Acids, 2010 (2010)
|
[123] |
Wouters, A., Boeckx, C., Vermorken, J.B. et al. The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic microenvironment and hypoxia-inducible factors Curr. Pharm. Des., 19 (2013),pp. 907-917
|
[124] |
Xiong, Y., McCormack, M., Li, L. et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems Nature, 496 (2013),pp. 181-186
|
[125] |
Xu, X.M., Lin, H., Maple, J. et al. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation J. Cell Sci., 123 (2010),pp. 1644-1651
|
[126] |
Xu, Y., Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb) Nucleic Acids Res., 34 (2006),pp. 949-954
|
[127] |
Yadav, V.K., Abraham, J.K., Mani, P. et al. QuadBase: genome-wide database of G4 DNA–occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes Nucleic Acids Res., 36 (2008),pp. D381-D385
|
[128] |
Yang, D., Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs Future Med. Chem., 2 (2010),pp. 619-646
|
[129] |
Yatabe, N., Kyo, S., Maida, Y. et al. HIF-1-mediated activation of telomerase in cervical cancer cells Oncogene, 23 (2004),pp. 3708-3715
|
[130] |
Youens-Clark, K., Buckler, E., Casstevens, T. et al. Gramene database in 2010: updates and extensions Nucleic Acids Res., 39 (2011),pp. D1085-D1094
|
[131] |
Yu, R.M., Chen, E.X., Kong, R.Y. et al. BMC Mol. Biol., 7 (2006),p. 27
|
[132] |
Yuan, L., Tian, T., Chen, Y. et al. Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy Sci. Rep., 3 (2013),p. 1811
|
[133] |
Zeng, Y., Wu, Y., Avigne, W.T. et al. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses Plant Physiol., 116 (1998),pp. 1573-1583
|