[1] |
Albert, F.W., Hodges, E., Jensen, J.D. et al. Targeted resequencing of a genomic region influencing tameness and aggression reveals multiple signals of positive selection Heredity, 107 (2011),pp. 205-214
|
[2] |
Albert, F.W., Somel, M., Carneiro, M. et al. A comparison of brain gene expression levels in domesticated and wild animals PLoS Genet., 8 (2012),p. e1002962
|
[3] |
Alkan, C., Coe, B.P., Eichler, E.E. Genome structural variation discovery and genotyping Nat. Rev. Genet., 12 (2011),pp. 363-376
|
[4] |
Axelsson, E., Ratnakumar, A., Arendt, M.L. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet Nature, 495 (2013),pp. 360-364
|
[5] |
Baker, M. Structural variation: the genome's hidden architecture Nat. Methods, 9 (2012),pp. 133-137
|
[6] |
Bentley, D.R., Balasubramanian, S., Swerdlow, H.P. et al. Accurate whole human genome sequencing using reversible terminator chemistry Nature, 456 (2008),pp. 53-59
|
[7] |
Bickhart, D.M., Liu, G.E. The challenges and importance of structural variation detection in livestock Front. Genet., 5 (2014),p. 37
|
[8] |
Chen, K., Baxter, T., Muir, W.M. et al. Int. J. Biol. Sci., 3 (2007),pp. 153-165
|
[9] |
Feuk, L., Macdonald, J.R., Tang, T. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies PLoS Genet., 1 (2005),p. e56
|
[10] |
Groenen, M.A., Archibald, A.L., Uenishi, H. et al. Analyses of pig genomes provide insight into porcine demography and evolution Nature, 491 (2012),pp. 393-398
|
[11] |
Huang Da, W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources Nat. Protoc., 4 (2009),pp. 44-57
|
[12] |
Krzywinski, M., Schein, J., Birol, I. et al. Circos: an information aesthetic for comparative genomics Genome Res., 19 (2009),pp. 1639-1645
|
[13] |
Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform Bioinformatics, 25 (2009),pp. 1754-1760
|
[14] |
Li, M., Tian, S., Jin, L. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars Nat. Genet., 45 (2013),pp. 1431-1438
|
[15] |
Li, M., Tian, S., Yeung, C.K. et al. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication Sci. Rep., 4 (2014),p. 4678
|
[16] |
Li, Y., Zheng, H., Luo, R. et al. Nat. Biotechnol., 29 (2011),pp. 723-730
|
[17] |
Piednoel, M., Aberer, A.J., Schneeweiss, G.M. et al. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae Mol. Biol. Evol., 29 (2012),pp. 3601-3611
|
[18] |
Rubin, C.J., Megens, H.J., Martinez Barrio, A. et al. Strong signatures of selection in the domestic pig genome Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 19529-19536
|
[19] |
Wang, J., Jiang, J., Fu, W. et al. A genome-wide detection of copy number variations using SNP genotyping arrays in swine BMC Genomics, 13 (2012),p. 273
|
[20] |
Wang, J., Jiang, J., Wang, H. et al. Enhancing genome-wide copy number variation identification by high density array CGH using diverse resources of pig breeds PLoS ONE, 9 (2014),p. e87571
|