5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 7
Jul.  2014

The E3 Ubiquitin Ligase gp78 Protects against ER Stress in Zebrafish Liver

doi: 10.1016/j.jgg.2014.05.005
More Information
  • Corresponding author: E-mail address: sdu@som.umaryland.edu (Shaojun Du); E-mail address: sfang@umaryland.edu (Shengyun Fang)
  • Received Date: 2014-04-22
  • Accepted Date: 2014-05-04
  • Rev Recd Date: 2014-05-03
  • Available Online: 2014-06-01
  • Publish Date: 2014-07-20
  • Enhanced endoplasmic reticulum (ER)-associated protein degradation (ERAD) activity by the unfolded protein response (UPR) represents one of the mechanisms for restoring ER homeostasis. In vitro evidence indicates that the mammalian gp78 protein is an E3 ubiquitin ligase that facilitates ERAD by polyubiquitinating and targeting proteins for proteasomal degradation under both physiologic and stress conditions. However, the in vivo function of gp78 in maintaining ER protein homeostasis remains untested. Here we show that like its mammalian counterpart, the zebrafish gp78 is also an E3 ubiquitin ligase as revealed by in vitro ubiquitination assays. Expression analysis uncovered that gp78 is highly expressed in several organs, including liver and brain, of both larval and adult fish. Treatment of larvae or adult fish with tunicamycin induces ER stress and upregulates the expression of several key components of the gp78 ERAD complex in the liver. Moreover, liver-specific overexpression of the dominant-negative form of gp78 (gp78-R2M) renders liver more sensitive to tunicamycin-induced ER stress and enhances the expression of sterol response element binding protein (Srebp)-target genes, which was largely suppressed in fish overexpressing wild-type gp78. Together, these data indicate that gp78 plays a critical role in protecting against ER stress in liver.
  • [1]
    Amano, T., Yamasaki, S., Yagishita, N. et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy Genes Dev., 17 (2003),pp. 2436-2449
    [2]
    Ballar, P., Ors, A.U., Yang, H. et al. Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1 Int. J. Biochem. Cell Biol., 42 (2010),pp. 167-173
    [3]
    Ballar, P., Shen, Y., Yang, H. et al. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation J. Biol. Chem., 281 (2006),pp. 35359-35368
    [4]
    Bernardi, K.M., Williams, J.M., Kikkert, M. et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation Mol. Biol. Cell, 21 (2010),pp. 140-151
    [5]
    Bian, Y.H., Xu, C., Li, J. et al. Transgenic Res., 20 (2011),pp. 787-798
    [6]
    Chen, Z., Du, S., Fang, S. gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum Curr. Protein Pept. Sci., 13 (2012),pp. 414-424
    [7]
    Cinaroglu, A., Gao, C., Imrie, D. et al. Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish Hepatology, 54 (2011),pp. 495-508
    [8]
    Das, R., Mariano, J., Tsai, Y.C. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78 Mol. Cell, 34 (2009),pp. 674-685
    [9]
    Du, S.J., Dienhart, M. Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish Differentiation, 67 (2001),pp. 84-91
    [10]
    Fang, S., Ferrone, M., Yang, C. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 14422-14427
    [11]
    Fisher, E.A., Khanna, N.A., McLeod, R.S. Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway J. Lipid Res., 52 (2011),pp. 1170-1180
    [12]
    Fu, M., Li, L., Albrecht, T. et al. Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release Cell Death Differ., 18 (2011),pp. 1057-1070
    [13]
    Howarth, D.L., Vacaru, A.M., Tsedensodnom, O. et al. Alcohol disrupts endoplasmic reticulum function and protein secretion in hepatocytes Alcohol Clin. Exp. Res., 36 (2012),pp. 14-23
    [14]
    Joshi, B., Li, L., Nabi, I.R. A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase J. Biol. Chem., 285 (2010),pp. 8830-8839
    [15]
    Kammoun, H.L., Chabanon, H., Hainault, I. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice J. Clin. Invest., 119 (2009),pp. 1201-1215
    [16]
    Kim, S.M., Acharya, P., Engel, J.C. et al. J. Biol. Chem., 285 (2010),pp. 35866-35877
    [17]
    Kostova, Z., Tsai, Y.C., Weissman, A.M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation Semin. Cell Dev. Biol., 18 (2007),pp. 770-779
    [18]
    Li, H., Xu, J., Bian, Y.H. et al. Smyd1b_tv1, a key regulator of sarcomere assembly, is localized on the M-line of skeletal muscle fibers PLoS ONE, 6 (2011),p. e28524
    [19]
    Li, W., Tu, D., Li, L. et al. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2 Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3722-3727
    [20]
    Lieschke, G.J., Currie, P.D. Animal models of human disease: zebrafish swim into view Nat. Rev. Genet., 8 (2007),pp. 353-367
    [21]
    Liu, T.F., Tang, J.J., Li, P.S. et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis Cell Metab., 16 (2012),pp. 213-225
    [22]
    Malhotra, J.D., Kaufman, R.J. The endoplasmic reticulum and the unfolded protein response Semin. Cell Dev. Biol., 18 (2007),pp. 716-731
    [23]
    Mehnert, M., Sommer, T., Jarosch, E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum Bioessays, 32 (2010),pp. 905-913
    [24]
    Morito, D., Hirao, K., Oda, Y. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508 Mol. Biol. Cell, 19 (2008),pp. 1328-1336
    [25]
    Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
    [26]
    Pagliassotti, M.J. Endoplasmic reticulum stress in nonalcoholic Fatty liver disease Annu. Rev. Nutr., 32 (2012),pp. 17-33
    [27]
    Passeri, M.J., Cinaroglu, A., Gao, C. et al. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation Hepatology, 49 (2009),pp. 443-452
    [28]
    Peer, C.J., Sissung, T.M., Figg, W.D. CHIP and gp78-mediated ubiquitination of CYP3A4: implications for the pharmacology of anticancer agents Cancer Biol. Ther., 11 (2011),pp. 549-551
    [29]
    Ponting, C.P. Proteins of the endoplasmic-reticulum-associated degradation pathway: domain detection and function prediction Biochem. J., 351 (2000),pp. 527-535
    [30]
    Ron, D., Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 519-529
    [31]
    Sasagawa, Y., Yamanaka, K., Ogura, T. Genes Cells, 12 (2007),pp. 1063-1073
    [32]
    Shen, Y., Ballar, P., Apostolou, A. et al. ER stress differentially regulates the stabilities of ERAD ubiquitin ligases and their substrates Biochem. Biophys. Res. Commun., 352 (2007),pp. 919-924
    [33]
    Shen, Y., Ballar, P., Fang, S. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin Biochem. Biophys. Res. Commun., 349 (2006),pp. 1285-1293
    [34]
    Shimizu, K., Tani, M., Watanabe, H. et al. The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein FEBS Lett., 456 (1999),pp. 295-300
    [35]
    Song, B.L., Sever, N., DeBose-Boyd, R.A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase Mol. Cell, 19 (2005),pp. 829-840
    [36]
    Tan, X., Rotllant, J., Li, H. et al. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 2713-2718
    [37]
    Thakur, P.C., Stuckenholz, C., Rivera, M.R. et al. Hepatology, 54 (2011),pp. 452-462
    [38]
    Tiwari, S., Weissman, A.M. Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s) J. Biol. Chem., 276 (2001),pp. 16193-16200
    [39]
    Tsai, Y.C., Leichner, G.S., Pearce, M.M. et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system Mol. Biol. Cell, 23 (2012),pp. 4484-4494
    [40]
    Urasaki, A., Morvan, G., Kawakami, K. Genetics, 174 (2006),pp. 639-649
    [41]
    Vembar, S.S., Brodsky, J.L. One step at a time: endoplasmic reticulum-associated degradation Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 944-957
    [42]
    Walter, P., Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation Science, 334 (2011),pp. 1081-1086
    [43]
    Wang, Y., Guan, S., Acharya, P. et al. Ubiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination J. Biol. Chem., 286 (2011),pp. 9443-9456
    [44]
    Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
    [45]
    Werstuck, G.H., Lentz, S.R., Dayal, S. et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways J. Clin. Invest., 107 (2001),pp. 1263-1273
    [46]
    Xu, J., Gao, J., Li, J. et al. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles J. Genet. Genomics, 39 (2012),pp. 69-80
    [47]
    Yagishita, N., Ohneda, K., Amano, T. et al. Essential role of synoviolin in embryogenesis J. Biol. Chem., 280 (2005),pp. 7909-7916
    [48]
    Yang, H., Liu, C., Zhong, Y. et al. Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP PLoS ONE, 5 (2010),p. e8905
    [49]
    Ying, Z., Wang, H., Fan, H. et al. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation Hum. Mol. Genet., 18 (2009),pp. 4268-4281
  • Relative Articles

    [1]Guoli Yin, Fuping Qian, Jia Yao, Ziyang Wang, Xin Wang, Dong Liu, Cheng Wang. ftr82 is necessary for hair cell morphogenesis and auditory function during zebrafish development[J]. Journal of Genetics and Genomics, 2023, 50(2): 77-86. doi: 10.1016/j.jgg.2022.11.008
    [2]Fangying Zhao, Yafang Lu, Zhifan Li, Jiangyong He, Nianfei Cui, Lingfei Luo, Li Li. The CXCR4-CXCL12 axis promotes T cell reconstitution via efficient hematopoietic immigration[J]. Journal of Genetics and Genomics, 2022, 49(12): 1138-1150. doi: 10.1016/j.jgg.2022.04.005
    [3]Qingxia Jin, Yuqi Gao, Shimin Shuai, Yayue Chen, Kaiyuan Wang, Jun Chen, Jinrong Peng, Ce Gao. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification[J]. Journal of Genetics and Genomics, 2022, 49(12): 1101-1113. doi: 10.1016/j.jgg.2022.11.006
    [4]Luqingqing He, Qinxin Zhang, Dongya Jiang, Yunfeng Zhang, Yuxuan Wei, Yuxi Yang, Nan Li, Shuang Wang, Yunyun Yue, Qingshun Zhao. Zebrafish Foxc1a controls ventricular chamber maturation by directly regulating wwtr1 and nkx2.5 expression[J]. Journal of Genetics and Genomics, 2022, 49(6): 559-568. doi: 10.1016/j.jgg.2021.12.002
    [5]Fuli Liu, Hang Zhao, Ruiyan Kong, Lin Shi, Zhengran Li, Rui Ma, Huiqing Zhao, Zhouhua Li. Derlin-1 and TER94/VCP/p97 are required for intestinal homeostasis[J]. Journal of Genetics and Genomics, 2022, 49(3): 195-207. doi: 10.1016/j.jgg.2021.08.017
    [6]Weiping Yang, Pengkun Xu, Juncheng Zhang, Shuo Zhang, Zhenwei Li, Ke Yang, Xinyuan Chang, Yibo Li. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. doi: 10.1016/j.jgg.2022.02.002
    [7]Haibin Zhu, Qianlei Ren, Ziyi Yan, Shouying Xu, Jiahao Luo, Ximei Wu, Chao Tang. Human HAND1 inhibits the conversion of cholesterol to steroids in trophoblasts[J]. Journal of Genetics and Genomics, 2022, 49(4): 350-363. doi: 10.1016/j.jgg.2021.07.014
    [8]Siting Lai, Ankita Kumari, Jixiang Liu, Yiyue Zhang, Wenqing Zhang, Kuangyu Yen, Jin Xu. Chemical screening reveals Ronidazole is a superior prodrug to Metronidazole for nitroreductase-induced cell ablation system in zebrafish larvae[J]. Journal of Genetics and Genomics, 2021, 48(12): 1081-1090. doi: 10.1016/j.jgg.2021.07.015
    [9]Yufei Feng, Ping Yu, Jingyu Li, Ying Cao, Jingjing Zhang. Phosphatidylinositol 4-kinase β is required for the ciliogenesis of zebrafish otic vesicle[J]. Journal of Genetics and Genomics, 2020, 47(10): 627-636. doi: 10.1016/j.jgg.2020.07.007
    [10]Yimei Dai, Lu Zhu, Zhibin Huang, Minyu Zhou, Wan Jin, Wei Liu, Mengchang Xu, Tao Yu, Yiyue Zhang, Zilong Wen, Wangjun Liao, Wenqing Zhang. Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish[J]. Journal of Genetics and Genomics, 2016, 43(10): 593-600. doi: 10.1016/j.jgg.2016.09.001
    [11]Zhu Song, Xiaoli Zhang, Shuo Jia, Pamela C. Yelick, Chengtian Zhao. Zebrafish as a Model for Human Ciliopathies[J]. Journal of Genetics and Genomics, 2016, 43(3): 107-120. doi: 10.1016/j.jgg.2016.02.001
    [12]Yun-Mi Jeong, Tae-Eun Jin, Jung-Hwa Choi, Mi-Sun Lee, Hyun-Taek Kim, Kyu-Seok Hwang, Doo-Sang Park, Hyun-Woo Oh, Joong-Kook Choi, Vladimir Korzh, Melitta Schachner, Kwan-Hee You, Cheol-Hee Kim. Induction of clusterin Expression by Neuronal Cell Death in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(11): 583-589. doi: 10.1016/j.jgg.2014.08.007
    [13]Jianmeng Cao, Shangqi Li, Ming Shao, Xiaoning Cheng, Zhigang Xu, Deli Shi. The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(8): 417-428. doi: 10.1016/j.jgg.2014.06.008
    [14]Laura J. Sharpe, Vicky Burns, Andrew J. Brown. A Lipidomic Perspective on Intermediates in Cholesterol Synthesis as Indicators of Disease Status[J]. Journal of Genetics and Genomics, 2014, 41(5): 275-282. doi: 10.1016/j.jgg.2014.03.001
    [15]Qilin Gu, Xiaojie Yang, Xiaozhen He, Qing Li, Zongbin Cui. Generation and Characterization of a Transgenic Zebrafish Expressing the Reverse Tetracycline Transactivator[J]. Journal of Genetics and Genomics, 2013, 40(10): 523-531. doi: 10.1016/j.jgg.2013.06.008
    [16]Ping Fang, Jin-Fei Lin, Hong-Chao Pan, Yan-Qin Shen, Melitta Schachner. A Surgery Protocol for Adult Zebrafish Spinal Cord Injury[J]. Journal of Genetics and Genomics, 2012, 39(9): 481-487. doi: 10.1016/j.jgg.2012.07.010
    [17]Peng Huang, Zuoyan Zhu, Shuo Lin, Bo Zhang. Reverse Genetic Approaches in Zebrafish[J]. Journal of Genetics and Genomics, 2012, 39(9): 421-433. doi: 10.1016/j.jgg.2012.07.004
    [18]Yulin Xue, Chikin Kuok, An Xiao, Zuoyan Zhu, Shuo Lin, Bo Zhang. Identification and expression analysis of mical family genes in zebrafish[J]. Journal of Genetics and Genomics, 2010, 37(10): 685-693. doi: 10.1016/S1673-8527(09)60086-2
    [19]Ting Tao, Jinrong Peng. Liver development in zebrafish (Danio rerio)[J]. Journal of Genetics and Genomics, 2009, 36(6): 325-334. doi: 10.1016/S1673-8527(08)60121-6
    [20]Xun Huang, James T. Warren, Lawrence I. Gilbert. New players in the regulation of ecdysone biosynthesis[J]. Journal of Genetics and Genomics, 2008, 35(1): 1-10. doi: 10.1016/S1673-8527(08)60001-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads (8) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return